On Extensions over Semigroups and Applications

被引:2
|
作者
Huang, Wen [1 ]
Jin, Lei [1 ]
Ye, Xiangdong [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
来源
ENTROPY | 2016年 / 18卷 / 06期
关键词
extensions over semigroups; algebraic past; topological predictability; zero entropy; PARTIAL RIGHT ORDERS; NILPOTENT GROUPS; AMENABLE-GROUPS; ENTROPY;
D O I
10.3390/e18060230
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Applying a theorem according to Rhemtulla and Formanek, we partially solve an open problem raised by Hochman with an affirmative answer. Namely, we show that if G is a countable torsion-free locally nilpotent group that acts by homeomorphisms on X, and S subset of G is a subsemigroup not containing the unit of G such that f is an element of < 1, s f : s is an element of S > for every f is an element of C (X), then (X, G) has zero topological entropy.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Normal Extensions of Representations of Abelian Semigroups
    Li, Boyu
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (03): : 564 - 574
  • [42] ON SELFADJOINT EXTENSIONS OF SEMIGROUPS OF PARTIAL ISOMETRIES
    Bernik, Janez
    Marcoux, Laurent W.
    Popov, Alexey I.
    Radjavi, Heydar
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (11) : 7681 - 7702
  • [43] Polyhedra, lattice structures, and extensions of semigroups
    Altmann, Klaus
    Constantinescu, Alexandru
    Filip, Matej
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (04): : 3938 - 4008
  • [44] Archimedean ordered semigroups as ideal extensions
    Niovi Kehayopulu
    Michael Tsingelis
    Semigroup Forum, 2009, 78 : 343 - 348
  • [45] ON EXTENSIONS OF SEMIGROUPS DETERMINED BY PARTIAL HOMOMORPHISMS
    PETRICH, M
    KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETESCHAPPEN-PROCEEDINGS SERIES A-MATHEMATICAL SCIENCES, 1966, 69 (01): : 49 - &
  • [46] Uniqueness of form extensions and domination of semigroups
    Lenz, Daniel
    Schmidt, Marcel
    Wirth, Melchior
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (06)
  • [47] Extensions of isometric dual representations of semigroups
    Batty, CJK
    Greenfield, DA
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1996, 28 : 375 - 384
  • [48] CONGRUENCE EXTENSIONS IN REGULAR-SEMIGROUPS
    TROTTER, PG
    JOURNAL OF ALGEBRA, 1991, 137 (01) : 166 - 179
  • [49] On w-extensions of the abelian semigroups
    Grigorian, S. A.
    Khorkova, T. A.
    ARMENIAN JOURNAL OF MATHEMATICS, 2009, 2 (02): : 73 - 76
  • [50] On extensions of completely simple semigroups by groups
    Dekany, Tamas
    SEMIGROUP FORUM, 2014, 89 (03) : 600 - 608