On Coupling Robust Estimation with Regularization for High-Dimensional Data

被引:1
|
作者
Kalina, Jan [1 ,2 ]
Hlinka, Jaroslav [1 ,2 ]
机构
[1] Czech Acad Sci, Inst Comp Sci, Pod Vodarenskou Vezi 2, Prague 18207, Czech Republic
[2] Natl Inst Mental Hlth, Topolova 748, Klecany 25067, Czech Republic
关键词
STATISTICAL-METHODS;
D O I
10.1007/978-3-319-55723-6_2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Standard data mining procedures are sensitive to the presence of outlying measurements in the data. Therefore, robust data mining procedures are highly desirable, which are resistant to outliers. This work has the aim to propose new robust classification procedures for high-dimensional data and algorithms for their efficient computation. Particularly, we use the idea of implicit weights assigned to individual observation to propose several robust regularized versions of linear discriminant analysis (LDA), suitable for data with the number of variables exceeding the number of observations. The approach is based on a regularized version of the minimum weighted covariance determinant (MWCD) estimator and represents a unique attempt to combine regularization and high robustness, allowing to down-weight outlying observations. Classification performance of new methods is illustrated on real fMRI data acquired in neuroscience research.
引用
收藏
页码:15 / 27
页数:13
相关论文
共 50 条
  • [1] Modified Regularization for High-dimensional Data Decomposition
    Chai, Sheng
    Feng, Wenying
    Hassanein, Hossam
    [J]. 2022 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY, WI-IAT, 2022, : 710 - 714
  • [2] Regularization techniques for high-dimensional data analysis
    Lu, Jiwen
    Peng, Xi
    Deng, Weihong
    Mian, Ajmal
    [J]. IMAGE AND VISION COMPUTING, 2017, 60 : 1 - 3
  • [3] A new robust covariance matrix estimation for high-dimensional microbiome data
    Wang, Jiyang
    Liang, Wanfeng
    Li, Lijie
    Wu, Yue
    Ma, Xiaoyan
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2024, 66 (02) : 281 - 295
  • [4] Robust sparse precision matrix estimation for high-dimensional compositional data
    Liang, Wanfeng
    Wu, Yue
    Ma, Xiaoyan
    [J]. STATISTICS & PROBABILITY LETTERS, 2022, 184
  • [5] Robust PCA for high-dimensional data
    Hubert, M
    Rousseeuw, PJ
    Verboven, S
    [J]. DEVELOPMENTS IN ROBUST STATISTICS, 2003, : 169 - 179
  • [6] Robust estimation of the mean vector for high-dimensional data set using robust clustering
    Shahriari, Hamid
    Ahmadi, Orod
    [J]. JOURNAL OF APPLIED STATISTICS, 2015, 42 (06) : 1183 - 1205
  • [7] A BLOCKING AND REGULARIZATION APPROACH TO HIGH-DIMENSIONAL REALIZED COVARIANCE ESTIMATION
    Hautsch, Nikolaus
    Kyj, Lada M.
    Oomen, Roel C. A.
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2012, 27 (04) : 625 - 645
  • [8] Robust and sparse correlation matrix estimation for the analysis of high-dimensional genomics data
    Serra, Angela
    Coretto, Pietro
    Fratello, Michele
    Tagliaferri, Roberto
    [J]. BIOINFORMATICS, 2018, 34 (04) : 625 - 634
  • [9] Fast Robust Correlation for High-Dimensional Data
    Raymaekers, Jakob
    Rousseeuw, Peter J.
    [J]. TECHNOMETRICS, 2021, 63 (02) : 184 - 198
  • [10] Robust Ridge Regression for High-Dimensional Data
    Maronna, Ricardo A.
    [J]. TECHNOMETRICS, 2011, 53 (01) : 44 - 53