A Multi-Task Learning Framework for Head Pose Estimation under Target Motion

被引:90
|
作者
Yan, Yan [1 ]
Ricci, Elisa [2 ,3 ]
Subramanian, Ramanathan [4 ]
Liu, Gaowen [1 ]
Lanz, Oswald [2 ]
Sebe, Nicu [1 ]
机构
[1] Univ Trento, Dept Informat Engn & Comp Sci, Trento, Italy
[2] Fdn Bruno Kessler, Technol Vis, I-06100 Trento, Italy
[3] Univ Perugia, Dept Engn, I-06100 Perugia, Italy
[4] ADSC, Singapore, Singapore
关键词
Multi-task learning; graph guided; head pose classification; video surveillance; multi-camera systems;
D O I
10.1109/TPAMI.2015.2477843
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, head pose estimation (HPE) from low-resolution surveillance data has gained in importance. However, monocular and multi-view HPE approaches still work poorly under target motion, as facial appearance distorts owing to camera perspective and scale changes when a person moves around. To this end, we propose FEGA-MTL, a novel framework based on Multi-Task Learning (MTL) for classifying the head pose of a person who moves freely in an environment monitored by multiple, large field-of-view surveillance cameras. Upon partitioning the monitored scene into a dense uniform spatial grid, FEGA-MTL simultaneously clusters grid partitions into regions with similar facial appearance, while learning region-specific head pose classifiers. In the learning phase, guided by two graphs which a-priori model the similarity among (1) grid partitions based on camera geometry and (2) head pose classes, FEGA-MTL derives the optimal scene partitioning and associated pose classifiers. Upon determining the target's position using a person tracker at test time, the corresponding region-specific classifier is invoked for HPE. The FEGA-MTL framework naturally extends to a weakly supervised setting where the target's walking direction is employed as a proxy in lieu of head orientation. Experiments confirm that FEGA-MTL significantly outperforms competing single-task and multi-task learning methods in multi-view settings.
引用
收藏
页码:1070 / 1083
页数:14
相关论文
共 50 条
  • [31] Multi-task gradient descent for multi-task learning
    Lu Bai
    Yew-Soon Ong
    Tiantian He
    Abhishek Gupta
    Memetic Computing, 2020, 12 : 355 - 369
  • [32] Multi-task gradient descent for multi-task learning
    Bai, Lu
    Ong, Yew-Soon
    He, Tiantian
    Gupta, Abhishek
    MEMETIC COMPUTING, 2020, 12 (04) : 355 - 369
  • [33] A Multi-Task Framework for Infrared Small Target Detection and Segmentation
    Chen, Yuhang
    Li, Liyuan
    Liu, Xin
    Su, Xiaofeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [34] A Multi-Task Learning Framework for Abstractive Text Summarization
    Lu, Yao
    Liu, Linqing
    Jiang, Zhile
    Yang, Min
    Goebel, Randy
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 9987 - 9988
  • [35] A multi-task framework for metric learning with common subspace
    Peipei Yang
    Kaizhu Huang
    Cheng-Lin Liu
    Neural Computing and Applications, 2013, 22 : 1337 - 1347
  • [36] A Multi-task Learning Framework for Opinion Triplet Extraction
    Zhang, Chen
    Li, Qiuchi
    Song, Dawei
    Wang, Benyou
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020, : 819 - 828
  • [37] Focused multi-task learning in a Gaussian process framework
    Leen, Gayle
    Peltonen, Jaakko
    Kaski, Samuel
    MACHINE LEARNING, 2012, 89 (1-2) : 157 - 182
  • [38] Online Multi-Task Learning Framework for Ensemble Forecasting
    Xu, Jianpeng
    Tan, Pang-Ning
    Zhou, Jiayu
    Luo, Lifeng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2017, 29 (06) : 1268 - 1280
  • [39] A Multi-task Learning Framework for Product Ranking with BERT
    Wu, Xuyang
    Magnani, Alessandro
    Chaidaroon, Suthee
    Puthenputhussery, Ajit
    Liao, Ciya
    Fang, Yi
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 493 - 501
  • [40] MULTI-TASK LEARNING FOR FACE IDENTIFICATION AND ATTRIBUTE ESTIMATION
    Hsieh, Hui-Lan
    Hsu, Winston
    Chen, Yan-Ying
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 2981 - 2985