BURNING RATES AND SURFACE CHARACTERISTICS OF HYDROGEN-ENRICHED TURBULENT LEAN PREMIXED METHANE-AIR FLAMES

被引:0
|
作者
Guo, Hongsheng [1 ]
机构
[1] Natl Res Council Canada, Inst Chem Proc & Environm Technol, Ottawa, ON K1A 0R6, Canada
关键词
LAMINAR; VELOCITIES; PRESSURE;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The burning rates and surface characteristics of hydrogen-enriched turbulent lean premixed methane-air flames were experimentally studied by laser tomography visualization method using a V-shaped flame configuration. Turbulent burning velocities were measured and the variation of flame surface characteristics due to hydrogen addition was analyzed. The results show that hydrogen addition causes an increase in turbulent burning velocity for lean CH4-air mixtures when the turbulent level in the unburned mixture is not changed. The increase rate of turbulent burning velocity is higher than that of the corresponding laminar burning velocity, suggesting that the increase in turbulent velocity due to hydrogen addition is caused by not only chemical kinetics effect, but also the variation in flame structure due to turbulence. The further analysis of flame surface characteristics and brush thickness indicate that hydrogen addition slightly decreases local flame surface density, but increases total flame surface area because of the increased flame brush thickness. As a result, turbulent burning velocity is intensified by the increase in total flame surface area and the increased laminar burning velocity, when hydrogen is added.
引用
收藏
页码:97 / 103
页数:7
相关论文
共 50 条
  • [1] Burning rates and surface characteristics of hydrogen-enriched turbulent lean premixed methane-air flames
    Guo, Hongsheng
    Tayebi, Badri
    Galizzi, Cedric
    Escudie, Dany
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (20) : 11342 - 11348
  • [2] Direct numerical simulation of hydrogen-enriched lean premixed methane-air flames
    Hawkes, ER
    Chen, JH
    [J]. COMBUSTION AND FLAME, 2004, 138 (03) : 242 - 258
  • [3] Flame characteristics of hydrogen-enriched methane-air premixed swirling flames
    Kim, Han S.
    Arghode, Vaibhav K.
    Gupta, Ashwani K.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (02) : 1063 - 1073
  • [4] Large eddy simulation of lean turbulent hydrogen-enriched methane-air premixed flames at high Karlovitz numbers
    Cicoria, David
    Chan, C. K.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (47) : 22479 - 22496
  • [5] Effect of Pressure on High Karlovitz Number Lean Turbulent Premixed Hydrogen-Enriched Methane-Air Flames Using LES
    Cicoria, David
    Chan, C. K.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [6] Lean blowout limits and nox emissions of turbulent, lean premixed, hydrogen-enriched methane/air flames at high pressure
    Griebel, P.
    Boschek, E.
    Jansohn, P.
    [J]. Proceedings of the ASME Turbo Expo 2006, Vol 1, 2006, : 405 - 412
  • [7] Lean blowout limits and NOx emissions of turbulent, lean premixed, hydrogen-enriched methane/air flames at high pressure
    Griebel, P.
    Boschek, E.
    Jansohn, P.
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2007, 129 (02): : 404 - 410
  • [8] Internal structure of hydrogen-enriched methane-air turbulent premixed flames: Flamelet and non-flamelet behavior
    Mohammadnejad, Sajjad
    Vena, Patrizio
    Yun, Sean
    Kheirkhah, Sina
    [J]. COMBUSTION AND FLAME, 2019, 208 : 139 - 157
  • [9] Impact of fuel supply driven instability on the response of hydrogen-enriched methane-air partially premixed turbulent flames
    Nam, Jaehyun
    Yoh, Jack J.
    [J]. COMBUSTION AND FLAME, 2022, 245
  • [10] Enhanced burning rates in hydrogen-enriched turbulent premixed flames by diffusion of molecular and atomic hydrogen
    Rieth, Martin
    Gruber, Andrea
    Williams, Forman A.
    Chen, Jacqueline H.
    [J]. COMBUSTION AND FLAME, 2022, 239