Classification of Cervical-Cancer Using Pap-Smear Images: A Convolutional Neural Network Approach

被引:47
|
作者
Taha, Bilal [1 ]
Dias, Jorge [1 ]
Werghi, Naoufel [1 ]
机构
[1] Khalifa Univ, Dept Elect & Comp Engn, Abu Dhabi, U Arab Emirates
关键词
Pap-smear classification; Deep learning; Convolutional neural network; SEGMENTATION;
D O I
10.1007/978-3-319-60964-5_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cervical cancer is the second most common and the fifth deadliest cancer in women. In this paper, we propose a deep learning approach for detecting cervix cancer from pap-smear images. Rather than designing and training a convolutional neural network (CNN) from the scratch, we show that we can employ a pre-trained CNN architecture as a feature extractor and use the output features as input to train a Support Vector Machine Classifier. We demonstrate the efficacy of such a new employment on the Herlev public database for single cell papsmear, whereby the experimental results show that our proposed system neatly outperforms other state of the art methods.
引用
收藏
页码:261 / 272
页数:12
相关论文
共 50 条
  • [41] Noninvasive Point-of-Care Nanobiosensing of Cervical Cancer as an Auxiliary to Pap-Smear Test
    Basak, Mitali
    Mitra, Shirsendu
    Agnihotri, Saurabh Kumar
    Jain, Ankita
    Vyas, Akanksha
    Bhatt, Madan Lal Brahma
    Sachan, Rekha
    Sachdev, Monika
    Nemade, Harshal B.
    Bandyopadhyay, Dipankar
    [J]. ACS APPLIED BIO MATERIALS, 2021, 4 (06): : 5378 - 5390
  • [42] PAPANICOLAOU (PAP) SMEAR SCREENING INTERVAL AND RISK OF CERVICAL-CANCER (CXCA)
    SHY, K
    CHU, J
    MANDELSON, M
    FIGGE, D
    GREER, B
    [J]. GYNECOLOGIC ONCOLOGY, 1987, 26 (03) : 409 - 409
  • [43] CERVICAL-CANCER SCREENING - THE PAP SMEAR - SUMMARY OF AN NIH CONSENSUS STATEMENT
    不详
    [J]. BMJ-BRITISH MEDICAL JOURNAL, 1980, 281 (6250): : 1264 - 1264
  • [44] Segmentation and Classification Techniques for Pap Smear Images in Detecting Cervical Cancer: A Systematic Review
    Wubineh, Betelhem Zewdu
    Rusiecki, Andrzej
    Halawa, Krzysztof
    [J]. IEEE ACCESS, 2024, 12 : 118195 - 118213
  • [45] Optimizing Cervical Cancer Classification with SVM and Improved Genetic Algorithm on Pap Smear Images
    Umamaheswari, S.
    Birnica, Y.
    Boobalan, J.
    Akshaya, V. S.
    [J]. COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2024, 32 (01) : 61 - 83
  • [46] HO-SsNF: heap optimizer-based self-systematized neural fuzzy approach for cervical cancer classification using pap smear images
    Shanmugam, Ashok
    Kavitha, K. V. N.
    Radhabai, Prianka Ramachandran
    Natarajan, Senthilnathan
    Imoize, Agbotiname Lucky
    Ojo, Stephen
    Nathaniel, Thomas I.
    [J]. FRONTIERS IN ONCOLOGY, 2024, 14
  • [47] A COLOR TEXTURE ANALYSIS METHOD BASED ON A GRAVITATIONAL APPROACH FOR CLASSIFICATION OF THE PAP-SMEAR DATABASE
    de Mesquita Sa Junior, Jarbas Joaci
    Backes, Andre Ricardo
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 2280 - 2284
  • [48] Breast Cancer Classification in Histopathological Images using Convolutional Neural Network
    Al Rahhal, Mohamad Mahmoud
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (03) : 64 - 68
  • [49] Cervical Cancer Classification from Pap Smear Images Using Modified Fuzzy C Means, PCA, and KNN
    Devi, N. Lavanya
    Thirumurugan, P.
    [J]. IETE JOURNAL OF RESEARCH, 2022, 68 (03) : 1591 - 1598
  • [50] An Optimal Neural Network Classifier for Cervical Pap smear Data
    Hemalatha, K.
    Rani, K. Usha
    [J]. 2017 7TH IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2017, : 110 - 114