Asymptotics for the Sasa-Satsuma equation in terms of a modified Painleve II transcendent

被引:23
|
作者
Huang, Lin [1 ]
Lenells, Jonatan [2 ]
机构
[1] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310018, Peoples R China
[2] KTH Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
基金
中国国家自然科学基金; 欧洲研究理事会; 欧盟地平线“2020”;
关键词
Sasa-Satsuma equation; Riemann-Hilbert problem; Asymptotics; Initial value problem; RIEMANN-HILBERT PROBLEMS; STEEPEST DESCENT METHOD;
D O I
10.1016/j.jde.2019.11.062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the initial-value problem for the Sasa-Satsuma equation on the line with decaying initial data. Using a Riemann-Hilbert formulation and steepest descent arguments, we compute the long-time asymptotics of the solution in the sector vertical bar x vertical bar <= Mt(1/3) constant. It turns out that the asymptotics can be expressed in terms of the solution of a modified Painleve II equation. Whereas the standard Painleve II equation is related to a 2 x 2 matrix Riemann-Hilbert problem, this modified Painleve II equation is related to a 3 x 3 matrix Riemann-Hilbert problem. (C) 2019 The Authors. Published by Elsevier Inc.
引用
收藏
页码:7480 / 7504
页数:25
相关论文
共 50 条
  • [41] Soliton and breather solutions of the Sasa-Satsuma equation via the Darboux transformation
    Xu, Tao
    Wang, Danhua
    Li, Min
    Liang, Huan
    PHYSICA SCRIPTA, 2014, 89 (07)
  • [42] Soliton solutions for a two-component generalized Sasa-Satsuma equation
    Feng, Lian-li
    Zhu, Zuo-nong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2023, 75 (07)
  • [43] Soliton solutions for a two-component generalized Sasa-Satsuma equation
    Lian-li Feng
    Zuo-nong Zhu
    CommunicationsinTheoreticalPhysics, 2023, 75 (07) : 35 - 49
  • [44] Higher-order rogue wave solutions of the Sasa-Satsuma equation
    Feng, Bao-Feng
    ShV, Changyan
    Zhang, Guangxiong
    Wu, Chengfa
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (23)
  • [45] Solitary waves of the generalized Sasa-Satsuma equation with arbitrary refractive index
    Kudryashov, Nikolay A.
    OPTIK, 2021, 232
  • [46] Darboux Transformation and Soliton Solution of the Nonlocal Generalized Sasa-Satsuma Equation
    Sun, Hong-Qian
    Zhu, Zuo-Nong
    MATHEMATICS, 2023, 11 (04)
  • [47] Dynamics of optical solitons in higher-order Sasa-Satsuma equation
    Yao, Shao-Wen
    Akinyemi, Lanre
    Mirzazadeh, Mohammad
    Inc, Mustafa
    Hosseini, Kamyar
    Senol, Mehmet
    RESULTS IN PHYSICS, 2021, 30
  • [48] Exact solitary waves for the 2D Sasa-Satsuma equation
    Mvogo, Alain
    Mouassom, L. Fernand
    Nyam, F. M. Enyegue A.
    Mbane, C. Bioule
    CHAOS SOLITONS & FRACTALS, 2020, 133
  • [49] Darboux transformation and soliton solutions of the coupled generalized Sasa-Satsuma equation
    Wang, Kunle
    Huang, Lin
    Yu, Jing
    NONLINEAR DYNAMICS, 2023, 111 (22) : 21279 - 21288
  • [50] Application of the Nonlinear Steepest Descent Method to the Coupled Sasa-Satsuma Equation
    Geng, Xianguo
    Chen, Mingming
    Wang, Kedong
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (01) : 181 - 206