Multipartite entanglement in the random Ising chain

被引:2
|
作者
Zou, Jay S. [1 ]
Ansell, Helen S. [1 ]
Kovacs, Istvan A. [1 ,2 ]
机构
[1] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
[2] Northwestern Univ, Northwestern Inst Complex Syst, Evanston, IL 60208 USA
关键词
RANDOM IMPURITIES; MODEL; VOLUME; SET;
D O I
10.1103/PhysRevB.106.054201
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantifying entanglement of multiple subsystems is a challenging open problem in interacting quantum systems. Here, we focus on two subsystems of length l separated by a distance r = alpha l and quantify their entanglement negativity (epsilon) and mutual information (I) in critical random Ising chains. We find universal constant epsilon(alpha) and I(alpha) over any distances, using the asymptotically exact strong disorder renormalization group method. Our results are qualitatively different from both those in the clean Ising model and random spin chains of a singlet ground state, like the spin-1/2 random Heisenberg chain and the random XX chain. While for random singlet states I(alpha)/epsilon(alpha) = 2, in the random Ising chain this universal ratio is strongly alpha dependent. This deviation between systems contrasts with the behavior of the entanglement entropy of a single subsystem, for which the various random critical chains and clean models give the same qualitative behavior. The reason is that epsilon and I are sensitive to higher order correlations in the ground-state structure. Therefore, studying multipartite entanglement provides additional universal information in random quantum systems, beyond what we can learn from a single subsystem.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Multipartite entanglement measures
    Szalay, Szilard
    PHYSICAL REVIEW A, 2015, 92 (04)
  • [42] Detecting multipartite entanglement
    Doherty, AC
    Parrilo, PA
    Spedalieri, FM
    PHYSICAL REVIEW A, 2005, 71 (03):
  • [43] Quantifying multipartite entanglement
    Wei, TC
    Altepeter, JB
    Das, D
    Ericsson, M
    Goldbart, PM
    Mukhopadyay, S
    Munro, WJ
    Vishveshwara, S
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, 2004, 734 : 241 - 244
  • [44] Multipartite entanglement and hypermatrices
    Hilling, Joseph J.
    Sudbery, Anthony
    QUANTUM THEORY: RECONSIDERATION OF FOUNDATIONS - 5, 2010, 1232 : 153 - 161
  • [45] Multipartite entanglement percolation
    Perseguers, S.
    Cavalcanti, D.
    Lapeyre, G. J., Jr.
    Lewenstein, M.
    Acin, A.
    PHYSICAL REVIEW A, 2010, 81 (03):
  • [46] Detection of Genuine Multipartite Entanglement in Multipartite Systems
    Jing Yun Zhao
    Hui Zhao
    Naihuan Jing
    Shao-Ming Fei
    International Journal of Theoretical Physics, 2019, 58 : 3181 - 3191
  • [47] Hierarchies of Multipartite Entanglement
    Levi, Federico
    Mintert, Florian
    PHYSICAL REVIEW LETTERS, 2013, 110 (15)
  • [48] Comparability of multipartite entanglement
    Ji, ZF
    Duan, RY
    Ying, MS
    PHYSICS LETTERS A, 2004, 330 (06) : 418 - 423
  • [49] Multipartite entanglement and firewalls
    Luo, Shengqiao
    Stoltenberg, Henry
    Albrecht, Andreas
    PHYSICAL REVIEW D, 2017, 95 (06)
  • [50] Detection of Genuine Multipartite Entanglement in Multipartite Systems
    Zhao, Jing Yun
    Zhao, Hui
    Jing, Naihuan
    Fei, Shao-Ming
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (10) : 3181 - 3191