In situ electrochemical characterisation of graphene and various carbon-based electrode materials: an internal standard approach

被引:56
|
作者
Brownson, Dale A. C. [1 ]
Kelly, Peter J. [1 ]
Banks, Craig E. [1 ]
机构
[1] Manchester Metropolitan Univ, Div Chem & Environm Sci, Sch Sci & Environm, Fac Sci & Engn, Manchester M1 5GD, Lancs, England
来源
RSC ADVANCES | 2015年 / 5卷 / 47期
关键词
MULTILAYER GRAPHENE; PYROLYTIC-GRAPHITE; SINGLE; FABRICATION; MONOLAYER; NANOTUBES; OXIDATION; PRISTINE; KINETICS; NADH;
D O I
10.1039/c5ra03049h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We employ an internal standard protocol to simultaneously characterise and utilise electrode materials during their electrochemical implementation. The proposed approach involves 'spiking' a solution containing the analyte of interest (namely, beta-nicotinamide adenine dinucleotide (NADH)) with a common electrochemical redox probe (such as hexaammine-ruthenium(III) chloride), which consequently allows information on the electrochemical properties of the electrode being utilised to be obtained and monitored throughout its application. This approach is explored using a range of commonly encountered carbonaceous electrode materials, including various graphene configurations, such as monolayer, double- and few-layered graphene electrodes - the latter is reported for the first time. The variability in structural quality and stability of the graphene electrodes used (particularly between batches) highlights the necessity for implementation of such approaches within the literature. This work provides a simple, yet effective option for the in situ electrochemical characterisation of various electrode materials, essential where the quality and composition of a 'reported' electrode material can vary greatly depending on its fabrication (batch-to-batch quality) or during the course of experimental use.
引用
收藏
页码:37281 / 37286
页数:6
相关论文
共 50 条
  • [21] Review of carbon-based electrode materials for supercapacitor energy storage
    Dubey, Richa
    Guruviah, Velmathi
    IONICS, 2019, 25 (04) : 1419 - 1445
  • [22] Advances in Modification Methods and Applications of Carbon-based Electrode Materials
    Shi, Kaiyan
    Bai, Jie
    Sun, Weiyan
    Cailiao Daobao/Materials Reports, 2024, 38 (22):
  • [23] An in situ approach to robust superhydrophobic carbon-based film
    Zhang, Renhui
    Pu, Jibin
    SURFACE AND INTERFACE ANALYSIS, 2016, 48 (12) : 1345 - 1349
  • [24] DESALINATION BY CAPACITIVE DEIONIZATION WITH CARBON-BASED MATERIALS AS ELECTRODE: A REVIEW
    Huang, Wei
    Zhang, Yimin
    Bao, Shenxu
    Song, Shaoxian
    SURFACE REVIEW AND LETTERS, 2013, 20 (06)
  • [25] Graphene/carbon-based materials for advanced energy conversion applications
    Mohan, Kurra
    Narsimhaswamy, D.
    Ravi, Varala
    ADVANCES IN NATURAL SCIENCES-NANOSCIENCE AND NANOTECHNOLOGY, 2022, 13 (03)
  • [26] Carbon-based Nanocomposite Materials for Electrochemical Monitoring of Cadmium Ions
    Singh, Manorama
    Patel, Dev Kumari
    Bhardiya, Smita R.
    Kumar, Rahul
    CURRENT ANALYTICAL CHEMISTRY, 2024,
  • [27] Defective Carbon-Based Materials for the Electrochemical Synthesis of Hydrogen Peroxide
    Chen, Shucheng
    Chen, Zhihua
    Siahrostami, Samira
    Kim, Taeho Roy
    Nordlund, Dennis
    Sokaras, Dimosthenis
    Nowak, Stanislaw
    To, John W. F.
    Higgins, Drew
    Sinclair, Robert
    Norskov, Jens K.
    Jaramillo, Thomas F.
    Bao, Zhenan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (01): : 311 - 317
  • [28] Structure controlled carbon-based materials for electrochemical energy storage
    Lu, An-Hui
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [29] Defective carbon-based materials: controllable synthesis and electrochemical applications
    Wu, Qilong
    Yan, Xuecheng
    Jia, Yi
    Yao, Xiangdong
    ENERGYCHEM, 2021, 3 (05)
  • [30] Selection and optimization of carbon-based electrode materials for flow-electrode capacitive deionization
    Zhang, Wanni
    Xue, Wenchao
    Xiao, Kang
    Visvanathan, Chettiyappan
    Tang, Jialing
    Li, Lu
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 315