PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds

被引:53
|
作者
Wei, Yi [1 ,2 ,3 ]
Wang, Ziyi [1 ,2 ,3 ]
Rao, Yongming [1 ,2 ,3 ]
Lu, Jiwen [1 ,2 ,3 ]
Zhou, Jie [1 ,2 ,3 ,4 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing, Peoples R China
[2] State Key Lab Intelligent Technol & Syst, Beijing, Peoples R China
[3] Beijing Natl Res Ctr Informat Sci & Technol, Beijing, Peoples R China
[4] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR46437.2021.00688
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a Point-Voxel Recurrent All-Pairs Field Transforms (PV-RAFT) method to estimate scene flow from point clouds. Since point clouds are irregular and unordered, it is challenging to efficiently extract features from all-pairs fields in the 3D space, where all-pairs correlations play important roles in scene flow estimation. To tackle this problem, we present point-voxel correlation fields, which capture both local and long-range dependencies of point pairs. To capture point-based correlations, we adopt the K-Nearest Neighbors search that preserves fine-grained information in the local region. By voxelizing point clouds in a multi-scale manner, we construct pyramid correlation voxels to model long-range correspondences. Integrating these two types of correlations, our PV-RAFT makes use of all-pairs relations to handle both small and large displacements. We evaluate the proposed method on the FlyingThings3D and KITTI Scene Flow 2015 datasets. Experimental results show that P V-RAFT outperforms state-of-the-art methods by remarkable margins.
引用
收藏
页码:6950 / 6959
页数:10
相关论文
共 50 条
  • [31] RPPformer-Flow: Relative Position Guided Point Transformer for Scene Flow Estimation
    Li, Hanlin
    Dong, Guanting
    Zhang, Yueyi
    Sun, Xiaoyan
    Xiong, Zhiwei
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 4867 - 4876
  • [32] RMS-FlowNet: Efficient and Robust Multi-Scale Scene Flow Estimation for Large-Scale Point Clouds
    Battrawy, Ramy
    Schuster, Rene
    Mahani, Mohammad-Ali Nikouei
    Stricker, Didier
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022,
  • [33] PVC-SSD: Point-Voxel Dual-Channel Fusion With Cascade Point Estimation for Anchor-Free Single-Stage 3-D Object Detection
    Deng, Pengzhen
    Zhou, Li
    Chen, Jie
    IEEE SENSORS JOURNAL, 2024, 24 (09) : 14894 - 14904
  • [34] FlowNet3D: Learning Scene Flow in 3D Point Clouds
    Liu, Xingyu
    Qi, Charles R.
    Guibas, Leonidas J.
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 529 - 537
  • [35] RigidFlow: Self-Supervised Scene Flow Learning on Point Clouds by Local Rigidity Prior
    Li, Ruibo
    Zhang, Chi
    Lin, Guosheng
    Wang, Zhe
    Shen, Chunhua
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 16938 - 16947
  • [36] 3D Point Convolutional Network for Dense Scene Flow Estimation
    Xiang, Xuezhi
    Abdein, Rokia
    Zhai, Mingliang
    Lv, Ning
    NEURAL PROCESSING LETTERS, 2022, 54 (02) : 1155 - 1173
  • [37] 3D Point Convolutional Network for Dense Scene Flow Estimation
    Xuezhi Xiang
    Rokia Abdein
    Mingliang Zhai
    Ning Lv
    Neural Processing Letters, 2022, 54 : 1155 - 1173
  • [38] PVA-GCN: point-voxel absorbing graph convolutional network for 3D human pose estimation from monocular video
    Liu, Minghao
    Wang, Wenshan
    Zhao, Wei
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (04) : 3627 - 3641
  • [39] PVA-GCN: point-voxel absorbing graph convolutional network for 3D human pose estimation from monocular video
    Minghao Liu
    Wenshan Wang
    Wei Zhao
    Signal, Image and Video Processing, 2024, 18 : 3627 - 3641
  • [40] Optical Flow Estimation Based on Spatiotemporal Plane Fitting of Event Point Clouds
    Eda, Takumi
    Kameda, Yusuke
    INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY, IWAIT 2024, 2024, 13164