Area Distances of Convex Plane Curves and Improper Affine Spheres

被引:10
|
作者
Craizer, Marcos [1 ]
Alvim, Moacyr [2 ]
Teixeira, Ralph [3 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Math, BR-22453900 Rio De Janeiro, Brazil
[2] Fundacao Getulio Vargas, Ctr Matemat, BR-22250900 Rio De Janeiro, Brazil
[3] Univ Fed Fluminense, Dept Math, BR-24210080 Rio De Janeiro, Brazil
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2008年 / 1卷 / 03期
关键词
area distances; improper affine spheres; discrete affine spheres;
D O I
10.1137/080714610
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The area distance to a convex plane curve is an important concept in computer vision. In this paper we describe a strong link between area distances and improper affine spheres. Based on this link, we propose an extremely fast algorithm to compute the inner area distance. Moreover, the concepts of the theory of affine spheres lead to a new definition of an area distance on the outer part of a convex plane curve. On the other hand, area distances provide a good geometrical understanding of improper affine spheres.
引用
收藏
页码:209 / 227
页数:19
相关论文
共 50 条
  • [31] Embedded complex curves in the affine plane
    Alarcon, Antonio
    Forstneric, Franc
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (04) : 1673 - 1701
  • [32] EMBEDDINGS OF CERTAIN CURVES IN AFFINE PLANE
    ABHYANKAR, SS
    SINGH, B
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1978, 100 (01) : 99 - 176
  • [33] Duality for Curves in Affine Plane Geometry
    Jan Dymara
    [J]. Geometriae Dedicata, 2000, 79 : 189 - 204
  • [34] APPROXIMATIONS FOR SOME AFFINE VARIANTS OF CONVEX CURVES
    HEIL, E
    [J]. MONATSHEFTE FUR MATHEMATIK, 1967, 71 (05): : 405 - &
  • [35] Anisotropic area-preserving nonlocal flow for closed convex plane curves
    Zhao, Tianyu
    Yang, Yunlong
    Mao, Yueyue
    Fang, Jianbo
    [J]. ADVANCES IN GEOMETRY, 2024, 24 (01) : 79 - 98
  • [36] On an area-preserving inverse curvature flow of convex closed plane curves
    Gao, Laiyuan
    Pan, Shengliang
    Tsai, Dong-Ho
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (08)
  • [37] ISOTRIVIAL FAMILIES OF CURVES ON AFFINE SURFACES AND CHARACTERIZATION OF THE AFFINE PLANE
    ZAIDENBERG, MG
    [J]. MATHEMATICS OF THE USSR-IZVESTIYA, 1987, 51 (03): : 503 - 532
  • [38] MINIMAL PROPERTIES FOR CONVEX ANNULI OF PLANE CONVEX CURVES
    PERI, C
    VASSALLO, S
    [J]. ARCHIV DER MATHEMATIK, 1995, 64 (03) : 254 - 263
  • [39] Anisotropic flows for convex plane curves
    Chou, KS
    Zhu, XP
    [J]. DUKE MATHEMATICAL JOURNAL, 1999, 97 (03) : 579 - 619
  • [40] General-Affine Invariants of Plane Curves and Space Curves
    Shimpei Kobayashi
    Takeshi Sasaki
    [J]. Czechoslovak Mathematical Journal, 2020, 70 : 67 - 104