Decompositions of linear spaces induced by bilinear maps

被引:1
|
作者
Calderon Martin, Antonio J. [1 ]
机构
[1] Univ Cadiz, Dept Math, Campus Puerto Real, Cadiz 11510, Spain
关键词
Linear space; Bilinear map; Orthogonality; Invariant subspace; Decomposition theorem; LEIBNIZ TRIPLE-SYSTEMS;
D O I
10.1016/j.laa.2017.04.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V be an arbitrary linear space and f : V x V -> V a bilinear map. We show that, for any choice of basis B of V, the bilinear map f induces on V a decomposition V = circle plus V-j is an element of J(j) as a direct sum of linear subspaces, which is f-orthogonal in the sense f (V-j, V-k) = 0 when j not equal k, and in such a way that any V-j is strongly f-invariant in the sense f (V-j, V) + f (V, V-j) subset of V-j. We also characterize the f-simplicity of any V-j. Finally, an application to the structure theory of arbitrary algebras is also provided. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:209 / 224
页数:16
相关论文
共 50 条
  • [21] Linear and bilinear Fourier multipliers on Orlicz modulation spaces
    Blasco, Oscar
    Oztop, Serap
    Uster, Ruya
    [J]. MONATSHEFTE FUR MATHEMATIK, 2024, 204 (04): : 679 - 705
  • [22] Dual spaces and bilinear forms in supertropical linear algebra
    Izhakian, Zur
    Knebusch, Manfred
    Rowen, Louis
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (07): : 865 - 883
  • [23] Continuous-Like Linear Operators on Bilinear Spaces
    Sabarinsyah
    Garminia, Hanni
    Astuti, Pudji
    [J]. JOURNAL OF MATHEMATICAL AND FUNDAMENTAL SCIENCES, 2020, 52 (02) : 250 - 258
  • [24] DILATIONS OF LINEAR MAPS ON VECTOR SPACES
    Krishna, K. Mahesh
    Johnson, P. Sam
    [J]. OPERATORS AND MATRICES, 2022, 16 (02): : 465 - 477
  • [25] Resolutions of topological linear spaces and continuity of linear maps
    Drewnowski, Lech
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) : 1177 - 1194
  • [27] Atomic Decompositions of Fuzzy Normed Linear Spaces for Wavelet Applications
    Nadaban, Sorin
    Dzitac, Ioan
    [J]. INFORMATICA, 2014, 25 (04) : 643 - 662
  • [28] Norm of a generalized Hilbert linear and bilinear form on the Hardy spaces
    Yang, Weifeng
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 541 (02)
  • [29] On the Admissible Control operators for Linear and Bilinear Systems and the Favard Spaces
    Maragh, F.
    Bounit, H.
    Fadili, A.
    Hammouri, H.
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (04) : 711 - 732
  • [30] Linear or bilinear mappings between spaces of continuous or Lipschitz functions
    Rambla-Barreno, Fernando
    [J]. PROCEEDINGS OF THE FOURTH INTERNATIONAL SCHOOL - ADVANCED COURSES OF MATHEMATICAL ANALYSIS IV, 2012, : 216 - 225