Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes

被引:698
|
作者
Etacheri, Vinodkumar [1 ]
Haik, Ortal [1 ]
Goffer, Yossi [1 ]
Roberts, Gregory A. [2 ]
Stefan, Ionel C. [2 ]
Fasching, Rainier [2 ]
Aurbach, Doron [1 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
[2] Amprius Inc, Menlo Pk, CA 94025 USA
关键词
SOLID-ELECTROLYTE INTERPHASE; ELECTROCHEMICAL PERFORMANCE; SILICON ANODES; THIN-FILM; LITHIUM; NANOCOMPOSITE; SPECTROSCOPY; SOLVENTS; BEHAVIOR; STORAGE;
D O I
10.1021/la203712s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The effect of FEC as a co-solvent on the electrochemical performance and surface chemistry of silicon nanowire (SiNW) anodes was thoroughly investigated. Enhanced electrochemical performance was observed for SiNW anodes in alkyl carbonates electrolyte solutions containing fluoroethylene carbonate (FEC). Reduced irreversible capacity losses accompanied by enhanced and stable reversible capacities over prolonged cycling were achieved with FEC-containing electrolyte solutions. TEM studies provided evidence for the complete and incomplete lithiation of SiNW's in FEC-containing and FEC-free electrolyte solutions, respectively. Scanning electron microscopy (SEM) results proved the formation of much thinner and compact surface films on SiNW's in FEC-containing solutions. However, thicker surface films were identified for SiNW electrodes cycled in FEC-free solutions. SiNW electrodes develop lower impedance in electrolyte solutions containing FEC in contrast to standard (FEC-free) solutions. The surface chemistry of SiNW electrodes cycled in FEC-modified and standard electrolytes investigated using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. The impact of FEC as a co-solvent on the electrochemical behavior of SiNW electrodes is discussed herein in light of the spectroscopic and microscopic studies.
引用
收藏
页码:965 / 976
页数:12
相关论文
共 50 条
  • [1] Consumption of Fluoroethylene Carbonate (FEC) on Si-C Composite Electrodes for Li-Ion Batteries
    Jung, Roland
    Metzger, Michael
    Haering, Dominik
    Solchenbach, Sophie
    Marino, Cyril
    Tsiouvaras, Nikolaos
    Stinner, Christoph
    Gasteiger, Hubert A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (08) : A1705 - A1716
  • [2] Effect of Vinylene Carbonate and Fluoroethylene Carbonate on SEI Formation on Graphitic Anodes in Li-Ion Batteries
    Nie, Mengyun
    Demeaux, Julien
    Young, Benjamin T.
    Heskett, David R.
    Chen, Yanjing
    Bose, Arijit
    Woicik, Joseph C.
    Lucht, Brett L.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (13) : A7008 - A7014
  • [3] Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes
    Hu, Liangbing
    Wu, Hui
    Hong, Seung Sae
    Cui, Lifeng
    McDonough, James R.
    Bohy, Sy
    Cui, Yi
    CHEMICAL COMMUNICATIONS, 2011, 47 (01) : 367 - 369
  • [4] Effect of Fluoroethylene Carbonate Additive on Low Temperature Performance of Li-Ion Batteries
    Liu, Bingxiao
    Li, Bing
    Guan, Shiyou
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2012, 15 (06) : A77 - A79
  • [5] Multiscale modelling of Si based Li-ion battery anodes
    Silveri, Fabrizio
    Alberghini, Matteo
    Esnault, Vivien
    Bertinetti, Andrea
    Rouchon, Virgile
    Giuliano, Mattia
    Gudendorff, Gauthier
    Zhao, Chen
    Bikard, Jerome
    Sgroi, Mauro
    Tommasi, Alessio
    Petit, Martin
    JOURNAL OF POWER SOURCES, 2024, 598
  • [6] Effect of Fluoroethylene Carbonate Additive on the Performance of Lithium Ion Battery
    Xu Jie
    Yao Wan-Hao
    Yao Yi-Wen
    Wang Zhou-Cheng
    Yang Yong
    ACTA PHYSICO-CHIMICA SINICA, 2009, 25 (02) : 201 - 206
  • [7] Preparation of uniform Si nanoparticles for high-performance Li-ion battery anodes
    Sun, Lin
    Su, Tingting
    Xu, Lei
    Du, Hong-Bin
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (03) : 1521 - 1525
  • [8] Silicon nanowire growth on carbon cloth for flexible Li-ion battery anodes
    Storan, Dylan
    Ahad, Syed Abdul
    Forde, Rebecca
    Kilian, Seamus
    Adegoke, Temilade Esther
    Kennedy, Tadhg
    Geaney, Hugh
    Ryan, Kevin M.
    MATERIALS TODAY ENERGY, 2022, 27
  • [9] DNA metallization for high performance Li-ion battery anodes
    Kim, Dong Jun
    Woo, Min-Ah
    Jung, Ye Lim
    Bharathi, K. Kamala
    Park, Hyun Gyu
    Kim, Do Kyung
    Choi, Jang Wook
    NANO ENERGY, 2014, 8 : 17 - 24
  • [10] Si and Al Nanostructures for Advanced Li-ion Battery Anodes.
    Pribat, Didier
    Tran Hung Nguyen
    IDW/AD '12: PROCEEDINGS OF THE INTERNATIONAL DISPLAY WORKSHOPS, PT 2, 2012, 19 : 1437 - 1440