The scattering operator on asymptotically hyperbolic manifolds

被引:0
|
作者
Barreto, Antonio Sa [1 ]
Wang, Yiran [2 ,3 ]
机构
[1] Purdue Univ, Dept Math, 150 North Univ St, W Lafayette, IN 47907 USA
[2] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
[3] Hong Kong Univ Sci & Technol, Inst Adv Study, Kowloon, Lo Ka Chung Bldg,Lee Shau Kee Campus, Hong Kong, Peoples R China
关键词
Asymptotically hyperbolic manifolds; radiation fields; scattering; scattering relation; wave equation; X-RAY TRANSFORM; INVERSE SCATTERING; LAPLACE OPERATOR; RESOLVENT; CONTINUATION; RIGIDITY; FIELDS;
D O I
10.4171/JST/248
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a formula for the Schwartz kernel of the scattering operator in terms of the Schwartz kernel of the forward fundamental solution of the wave operator on asymptotically hyperbolic manifolds. This formula is then used to show that the scattering operator is a Fourier integral operator that quantizes the scattering relation.
引用
收藏
页码:269 / 313
页数:45
相关论文
共 50 条
  • [21] Asymptotically Hyperbolic Manifolds with Small Mass
    Mattias Dahl
    Romain Gicquaud
    Anna Sakovich
    Communications in Mathematical Physics, 2014, 325 : 757 - 801
  • [22] The mass of asymptotically hyperbolic Riemannian manifolds
    Chrusciel, PT
    Herzlich, M
    PACIFIC JOURNAL OF MATHEMATICS, 2003, 212 (02) : 231 - 264
  • [23] ERRATA TO "DYNAMICS OF ASYMPTOTICALLY HYPERBOLIC MANIFOLDS"
    Rowlett, Julie
    PACIFIC JOURNAL OF MATHEMATICS, 2014, 268 (02) : 493 - 506
  • [24] Mass formulae for asymptotically hyperbolic manifolds
    Herzlich, M
    ADS/CFT CORRESPONDENCE: EINSTEIN METRICS AND THEIR CONFORMAL BOUNDARIES, 2005, 8 : 103 - 121
  • [25] The wave group on asymptotically hyperbolic manifolds
    Joshi, MS
    Barreto, AS
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 184 (02) : 291 - 312
  • [26] The GBC mass for asymptotically hyperbolic manifolds
    Ge, Yuxin
    Wang, Guofang
    Wu, Jie
    COMPTES RENDUS MATHEMATIQUE, 2014, 352 (02) : 147 - 151
  • [27] Static potentials on asymptotically hyperbolic manifolds
    Wang, Yaohua
    MANUSCRIPTA MATHEMATICA, 2024, 173 (3-4) : 889 - 906
  • [28] Asymptotically Hyperbolic Manifolds with Small Mass
    Dahl, Mattias
    Gicquaud, Romain
    Sakovich, Anna
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 325 (02) : 757 - 801
  • [29] The heat kernel on asymptotically hyperbolic manifolds
    Chen, Xi
    Hassell, Andrew
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (09) : 1031 - 1071
  • [30] Strongly asymptotically hyperbolic spin manifolds
    Zhang, X
    MATHEMATICAL RESEARCH LETTERS, 2000, 7 (5-6) : 719 - 727