Ichnological analysis: A tool to characterize deep-marine processes and sediments

被引:19
|
作者
Rodriguez-Tovar, Francisco J. [1 ]
机构
[1] Univ Granada, Dept Stratig & Palaeontol, Av Fuente Nueva S-N, Granada 18071, Spain
关键词
Pelagites/hemipelagites; Contourites; Turbidites; Hyperpycnites; Facies models; Trace fossils; Ichnofabric; Ichnofacies; GRADED TURBIDITE SEQUENCES; COMPOSITE ICHNOFABRICS; TRACE FOSSILS; SEA ICHNOLOGY; CONTOURITES; DEPOSITS; FACIES; MARGIN; SLOPE; BIOTURBATION;
D O I
10.1016/j.earscirev.2022.104014
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The deep-marine environment is a complex setting in which numerous processes -settling of pelagic and hemipelagic particles in the water column, sediment gravity flows (downslope density currents; turbid flows), and bottom currents- determine sediment deposition, hence a variety of facies including pelagites/hemipelagites, contourites, turbidites and hyperpycnites. Characterization and differentiation among deep-sea facies is a challenge, and numerous features may be highlighted to this end: sedimentary structures, geochemical data, micropaleontological information, etc. Ichnological information has become a valuable, yet in some cases controversial, proxy, being in most of cases understudied. This paper gathers the existing ichnological information regarding the most frequent deep-sea facies -from those in which ichnological analyses are numerous and detailed (e.g. pelagites/hemipelagites and turbidites), to those for which ichnological information is lacking or imprecise (hyperpycnites and contourites). This review analyses palaeoenvironmental (i.e., ecological and depositional) conditions associated with deep-sea sedimentary processes, influence of these changes on the tracemaker community, and associated ichnological properties. A detailed characterization of trace fossil assemblages, ichnofabrics and ichnofacies is presented. Special attention is paid to variations in trace fossil features, approached through sedimentary facies models and the outcrop/core scale. Similarities and differences among deep-sea facies are underlined to facilitate differentiation. Pelagic/hemipelagic sediments are completely bioturbated, showing biodeformational structures and trace fossils, being characterized by composite ichnofabrics. The trace fossil assemblage of muddy pelagites and hemipelagites is mainly assigned to the Zoophycos ichnofacies, and locally to the distal expression of the Cruziana ichnofacies. Turbidites are colonized mostly from the top, determining an uppermost part that is entirely bioturbated, the spotty layer; below it lies the elite layer, characterized by deep-tier trace fossils. Turbidite beds pertain to two different groups of burrows, either "predepositional", mainly graphogliptids, or "post-depositional" traces. Turbidite deposits are mostly characterized by the Nereites ichnofacies, with differentiation of three ichnosubfacies according to the different parts of the turbiditic systems and the associated palaeoenvironmental conditions. There are no major differences in the trace fossil content of the hyperpycnite facies and the classical post-depositional turbidite, nor in the pelagic/hemipelagic sediments, except for a lower ichnodiversity in the hyperpycnites. Trace fossil assemblages of distal hyperpycnites are mainly assigned to the Nereites ichnofacies, while graphogliptids are scarce or absent. Ichnological features vary within contourites, largely related to palaeoenvironmental conditions, depositional setting, and type of contourite. Ichnodiversity and abundance can be high, especially for mud-silty contourites. The ichnological features of mud-silty contourites are similar to those of the pelagic/hemipelagic sediments (the tiering structure probably being more complex in pelagic/hemipelagic) or to the upper part of the muddy turbidites (contourites probably being more continuously bioturbated). No single archetypal ichnofacies would characterize contourites, mainly assigned to the Zoophycos and Cruziana ichnofacies.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Lateral migration of large sedimentary bodies in a deep-marine system offshore of Argentina
    Adam Kirby
    Francisco Javier Hernández-Molina
    Sara Rodrigues
    Scientific Reports, 11
  • [42] A database solution for the quantitative characterisation and comparison of deep-marine siliciclastic depositional systems
    Cullis, Sophie
    Patacci, Marco
    Colombera, Luca
    Buhrig, Laura
    McCaffrey, William D.
    MARINE AND PETROLEUM GEOLOGY, 2019, 102 : 321 - 339
  • [43] DEEP-MARINE PSEUDO DUNE CROSS-STRATIFICATION-SIMILAR, BUT COMPLETELY DIFFERENT
    Arnott, R. W. C.
    Al-Mufti, O.
    JOURNAL OF SEDIMENTARY RESEARCH, 2017, 87 (03) : 312 - 323
  • [44] Ichnological analysis as a tool for assessing deep-sea circulation in the westernmost Mediterranean over the last Glacial Cycle
    Casanova-Arenillas, Santiago
    Rodriguez-Tovar, Francisco J.
    Martinez-Ruiz, Francisca
    PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2021, 562
  • [45] AN AGRICHNIAL FEEDING STRATEGY FOR DEEP-MARINE PALEOGENE OPHIOMORPHA GROUP TRACE FOSSILS
    Cummings, John Paul
    Hodgson, David M.
    PALAIOS, 2011, 26 (3-4) : 212 - 224
  • [46] Anthropogenic pollution in deep-marine sedimentary systems - A geological perspective on the plastic problem
    Kane, I. A.
    Fildani, A.
    GEOLOGY, 2021, 49 (05) : 607 - 608
  • [47] The deep-water architecture knowledge base: towards an objective comparison of deep-marine sedimentary systems
    Baas, JH
    McCaffrey, WD
    Knipe, RJ
    PETROLEUM GEOSCIENCE, 2005, 11 (04) : 309 - 320
  • [48] Depositional environment, ichnological features and oxygenation of Permian to earliest Triassic marine sediments in central Spitsbergen, Svalbard
    Uchman, Alfred
    Hanken, Nils-Martin
    Nielsen, Jesper Kresten
    Grundvag, Sten-Andreas
    Piasecki, Stefan
    POLAR RESEARCH, 2016, 35
  • [49] Supercritical-Flow Deposits: A New Quantitative Tool to Characterise Deep-Marine Depositional Environments (Oligocene Annot Sandstones, SE France)?
    Cornard, P. H.
    Pickering, K. T.
    Strasser, M.
    TERRA NOVA, 2025, 37 (01) : 49 - 56
  • [50] TAPHONOMY OF BACKSHORE VERSUS DEEP-MARINE COLLECTED NAUTILUS MACROMPHALUS CONCHS (NEW CALEDONIA)
    Seuss, Barbara
    Hembree, Daniel I.
    Wisshak, Max
    Mapes, Royal H.
    Landman, Neil H.
    PALAIOS, 2015, 30 (07) : 503 - 513