MULTIPLICATIVELY CLOSED MARKOV MODELS MUST FORM LIE ALGEBRAS

被引:8
|
作者
Sumner, Jeremy G. [1 ]
机构
[1] Univ Tasmania, Hobart, Tas 7000, Australia
来源
ANZIAM JOURNAL | 2017年 / 59卷 / 02期
基金
澳大利亚研究理事会;
关键词
Lie algebras; continuous-time Markov chains; semigroups; phylogenetics;
D O I
10.1017/S1446181117000359
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the probability substitution matrices obtained from a continuous-time Markov chain form a multiplicatively closed set if and only if the rate matrices associated with the chain form a linear space spanning a Lie algebra. The key original contribution we make is to overcome an obstruction, due to the presence of inequalities that are unavoidable in the probabilistic application, which prevents free manipulation of terms in the Baker-Campbell-Haursdorff formula.
引用
收藏
页码:240 / 246
页数:7
相关论文
共 50 条
  • [21] On closed Lie ideals and center of generalized group algebras
    Gupta, Ved Prakash
    Jain, Ranjana
    Talwar, Bharat
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 502 (01)
  • [22] Closed-form approximations of moments and densities of continuous-time Markov models
    Kristensen, Dennis
    Lee, Young Jun
    Mele, Antonio
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2024, 168
  • [23] Maximum likelihood estimation of latent Markov models using closed-form approximations
    Ait-Sahalia, Yacine
    Li, Chenxu
    Li, Chen Xu
    JOURNAL OF ECONOMETRICS, 2024, 240 (02)
  • [24] Quantum models for decision making and opinion dynamics the role of the Lie algebras The role of the Lie algebras
    Sarris, C. M.
    Proto, A. N.
    QUALITY & QUANTITY, 2014, 48 (04) : 1945 - 1956
  • [25] On the Killing form of Lie Algebras in Symmetric Ribbon Categories
    Buchberger, Igor
    Fuchs, Jurgen
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [27] Lie Markov models with purine/pyrimidine symmetry
    Fernandez-Sanchez, Jesus
    Sumner, Jeremy G.
    Jarvis, Peter D.
    Woodhams, Michael D.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2015, 70 (04) : 855 - 891
  • [28] Lie Markov models with purine/pyrimidine symmetry
    Jesús Fernández-Sánchez
    Jeremy G. Sumner
    Peter D. Jarvis
    Michael D. Woodhams
    Journal of Mathematical Biology, 2015, 70 : 855 - 891
  • [29] Magic squares and matrix models of Lie algebras
    Barton, CH
    Sudbery, A
    ADVANCES IN MATHEMATICS, 2003, 180 (02) : 596 - 647
  • [30] MODELS OF ISOTROPIC SIMPLE LIE-ALGEBRAS
    ALLISON, BN
    COMMUNICATIONS IN ALGEBRA, 1979, 7 (17) : 1835 - 1875