Microscopic characterization on low cycle fatigue behavior at room temperature of Zircaloy-4 alloy with recrystallized microstructure

被引:13
|
作者
Han, Fuzhou [1 ,2 ]
Liu, Chengze [1 ,2 ]
Yuan, Fusen [1 ,2 ]
Zhang, Yingdong [1 ,2 ]
Ali, Muhammad [1 ,2 ]
Gu, Hengfei [1 ,3 ]
Li, Geping [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China
[2] Univ Sci & Technol China, Sch Mat Sci & Engn, 96 JinZhai Rd, Hefei 230026, Anhui, Peoples R China
[3] Univ Chinese Acad Sci, 19 Yuquan Rd, Beijing 100049, Peoples R China
关键词
Zircaloy-4; LCF; Crack initiation; Crack propagation; Behavior; CRACK-PROPAGATION; DEFORMATION; MECHANISMS; INITIATION; RATES;
D O I
10.1016/j.jallcom.2018.11.139
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Low cycle fatigue (LCF) tests, with the total strain amplitude (Delta epsilon t/2) in the range of +/- (0.5-3.0%), were employed at room temperature on Zircaloy-4 (Zr-4) alloy with recrystallized microstructure, aiming to investigate its fatigue life, fatigue crack initiation and propagation mechanisms. Results indicated that the fatigue behavior of Zr-4 alloy followed Coffin-Mason relation with fatigue ductility exponent of 0.2426. Fractographic investigation of all mechanically tested specimens revealed that the fatigue specimen surface is the preferential crack initiation place. SEM observation on the crack propagation regions of fatigue specimens showed that a large number of fatigue striations distributed in the crack propagation regions. Further detailed investigation revealed that micro-crack growth rates can be quantitatively evaluated in terms of strain amplitude. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:318 / 326
页数:9
相关论文
共 50 条
  • [21] LOW-CYCLE FATIGUE AND CREEP-BEHAVIOR OF RECRYSTALLIZED MOLYBDENUM NEAR ROOM-TEMPERATURE
    SUN, ZM
    WANG, ZG
    HODL, H
    WEISS, B
    STICKLER, R
    [J]. MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 1995, 26 (09) : 483 - 487
  • [22] Low cycle fatigue behavior of Ti alloy IMI 834 at room temperature
    Singh, N
    Gouthama
    Singh, V
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2002, 325 (1-2): : 324 - 332
  • [23] Shear deformation behavior of Zircaloy-4 alloy plate
    Yuan, Fusen
    Li, Geping
    Han, Fuzhou
    Zhang, Yingdong
    Muhammad, Ali
    Guo, Wenbin
    Gu, Hengfei
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 774
  • [24] Fatigue deformation mechanism of weakly textured Zircaloy-4 alloy
    Choi, SB
    Lee, DH
    Kwun, SI
    [J]. METALS AND MATERIALS-KOREA, 1997, 3 (03): : 153 - 158
  • [25] The utilization of Weibull statistics to the interpretation of the low cycle fatigue test on Zircaloy-4 microsamples
    Paun, VP
    [J]. MATERIALE PLASTICE, 2004, 41 (01) : 45 - 47
  • [26] Fatigue deformation mechanism of weakly textured zircaloy-4 alloy
    S. B. Choi
    D. H. Lee
    S. J. Kwun
    [J]. Metals and Materials, 1997, 3 : 153 - 158
  • [27] Dislocation structure of Zircaloy-4 fatigued at room temperature.
    Herenu, S
    Alvarez-Armas, I
    Armas, A
    [J]. ELECTRON MICROSCOPY 1998, VOL 2: MATERIALS SCIENCE 1, 1998, : 163 - 164
  • [28] Low cycle fatigue behavior of Ti-1023 titanium alloy at room temperature
    Huang, Lijun
    Huang, Xu
    [J]. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2006, 35 (05): : 703 - 706
  • [29] Low cycle fatigue behavior of Ti-1023 titanium alloy at room temperature
    Huang, LJ
    Huang, X
    [J]. RARE METAL MATERIALS AND ENGINEERING, 2006, 35 (05) : 703 - 706
  • [30] Coating SiC on Zircaloy-4 by magnetron sputtering at room temperature
    Bao, Weichao
    Xue, Jiaxiang
    Liu, Ji-Xuan
    Wang, Xingang
    Gu, Yifeng
    Xu, Fangfang
    Zhang, Guo-Jun
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 730 : 81 - 87