Symmetry-breaking bifurcations for free boundary problems

被引:29
|
作者
Borisovich, A
Friedman, A
机构
[1] Univ Gdansk, Inst Math, PL-80952 Gdansk, Poland
[2] Ohio State Univ, Math Biosci Inst, Columbus, OH 43210 USA
关键词
free boundary problems; symmetry breaking bifurcation;
D O I
10.1512/iumj.2005.54.2473
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Free boundary problems often possess solutions which are radially symmetric. In this paper we demonstrate how to establish symmetry-breaking bifurcation branches of solutions by reducing the bifurcation problem to one for which standard bifurcation theory can be applied. This reduction is performed by first introducing a suitable diffeomorphism which maps the near circular unknown domain onto a disc or a ball, and then verifying the assumptions of the Crandall-Rabinowitz theorem. We carry out the analysis in detail, for the case of one elliptic equation with a Neumann condition at the free boundary and with Dirichlet data given by the curvature of the free boundary. Other examples are briefly mentioned.
引用
收藏
页码:927 / 947
页数:21
相关论文
共 50 条
  • [31] Symmetry-breaking bifurcations in a delayed reaction-diffusion equation
    Qu, Xiaowei
    Guo, Shangjiang
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [32] The shape of charged drops:: Symmetry-breaking bifurcations and numerical results
    Betelú, SI
    Fontelos, MA
    Kindelán, U
    [J]. Elliptic and Parabolic Problems: A SPECIAL TRIBUTE TO THE WORK OF HAIM BREZIS, 2005, 63 : 51 - 58
  • [33] SYMMETRY-BREAKING BIFURCATIONS IN ONE-DIMENSIONAL EXCITABLE MEDIA
    KNESS, M
    TUCKERMAN, LS
    BARKLEY, D
    [J]. PHYSICAL REVIEW A, 1992, 46 (08): : 5054 - 5062
  • [34] GLOBAL SYMMETRY-BREAKING BIFURCATIONS OF CRITICAL ORBITS OF INVARIANT FUNCTIONALS
    Golebiewska, Anna
    Hirano, Norimichi
    Rybicki, Slawomir
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (07): : 2005 - 2017
  • [35] Low-dimensional dynamo modelling and symmetry-breaking bifurcations
    Donner, Reik
    Seehafer, Norbert
    Sanjuan, Miguel A. F.
    Feudel, Fred
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2006, 223 (02) : 151 - 162
  • [36] SYMMETRY-BREAKING BIFURCATIONS ON MULTIDIMENSIONAL FIXED-POINT SUBSPACES
    LARILAVASSANI, A
    LANGFORD, WF
    HUSEYIN, K
    [J]. DYNAMICS AND STABILITY OF SYSTEMS, 1994, 9 (04): : 345 - 373
  • [37] BIFURCATIONS AND SYMMETRY-BREAKING IN SIMPLE-MODELS OF NONLINEAR DYNAMOS
    WEISS, NO
    [J]. COSMIC DYNAMO, 1993, (157): : 219 - 229
  • [38] Symmetry-Breaking Bifurcations and Patterns of Oscillations in Rings of Crystal Oscillators
    Buono, Pietro-Luciano
    Chan, Bernard
    Ferreira, Jocirei
    Palacios, Antonio
    Reeves, Steven
    Longhini, Patrick
    In, Visarath
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (02): : 1310 - 1352
  • [39] Symmetry-breaking bifurcations and representative firm in dynamic duopoly games
    Bischi, GI
    Gallegati, M
    Naimzada, A
    [J]. ANNALS OF OPERATIONS RESEARCH, 1999, 89 : 253 - 272
  • [40] Stability, symmetry-breaking bifurcations and chaos in discrete delayed models
    Peng, Mingshu
    Yuan, Yuan
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (05): : 1477 - 1501