Estimating dispersion parameter of negative binomial distribution for analysis of crash data - Bootstrapped maximum likelihood method

被引:19
|
作者
Zhang, Yunlong [1 ]
Ye, Zhirui [1 ]
Lord, Dominique [1 ]
机构
[1] Texas A&M Univ, Zachry Dept Civil Engn, College Stn, TX 77843 USA
关键词
D O I
10.3141/2019-03
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The objective of this study is to improve the estimation of the dispersion parameter of the negative binomial distribution for modeling motor vehicle collisions. The negative binomial distribution is widely used to model count data such as traffic crash data, which often exhibit low sample mean values and small sample sizes. Under such situations, the most commonly used methods for estimating the dispersion parameter-the method of moment and the maximum likelihood estimate-may become inaccurate and unstable. A bootstrapped maximum likelihood method is proposed to improve the estimation of the dispersion parameter. The proposed method combines the technique of bootstrap resampling with the maximum likelihood estimation method to obtain better estimates of the dispersion parameter. The performance of the bootstrapped maximum likelihood estimate is compared with the method of moment and the maximum likelihood estimates through Monte Carlo simulations. To validate the simulation results, the methods are applied to observed data collected at four-leg unsignalized intersections in Toronto, Ontario, Canada. Overall, the results show that the proposed bootstrap maximum likelihood method produces smaller biases and more stable estimates. The improvements are more pronounced with small samples and low sample means.
引用
收藏
页码:15 / 21
页数:7
相关论文
共 50 条
  • [41] A maximum likelihood binomial method for nonparametric linkage analysis of quantitative and ordered categorical traits in sibships
    Alcais, A
    Abel, L
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 1998, 6 : 108 - 108
  • [42] Maximum likelihood estimation of the four-parameter Kappa distribution using the penalty method
    Park, JS
    Park, BJ
    [J]. COMPUTERS & GEOSCIENCES, 2002, 28 (01) : 65 - 68
  • [43] Penalized Maximum Likelihood Method to a Class of Skewness Data Analysis
    Chen, Xuedong
    Zeng, Qianying
    Song, Qiankun
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [44] Time domain maximum likelihood parameter estimation in LISA Pathfinder data analysis
    Congedo, G.
    Ferraioli, L.
    Hueller, M.
    De Marchi, F.
    Vitale, S.
    Armano, M.
    Hewitson, M.
    Nofrarias, M.
    [J]. PHYSICAL REVIEW D, 2012, 85 (12):
  • [45] Modified Maximum Pseudo Likelihood Method of Copula Parameter Estimation for Skewed Hydrometeorological Data
    Joo, Kyungwon
    Shin, Ju-Young
    Heo, Jun-Haeng
    [J]. WATER, 2020, 12 (04)
  • [46] Modified maximum pseudo likelihood method of copula parameter estimation for skewed hydrometeorological data
    Joo K.
    Shin J.-Y.
    Heo J.-H.
    [J]. Water (Switzerland), 2020, 12 (04):
  • [47] Maximum likelihood parameter estimation in the three-parameter log-normal distribution using the continuation method
    Hirose, H
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1997, 24 (02) : 139 - 152
  • [48] New maximum-likelihood method for reduction of distribution-coefficient data
    Marshall, SL
    [J]. AICHE JOURNAL, 2003, 49 (10) : 2595 - 2608
  • [49] Bias properties of Bayesian statistics in finite mixture of negative binomial regression models in crash data analysis
    Park, Byung-Jung
    Lord, Dominique
    Hart, Jeffrey D.
    [J]. ACCIDENT ANALYSIS AND PREVENTION, 2010, 42 (02): : 741 - 749
  • [50] The impossibility of estimating a negative binomial clustering parameter from presence-absence data: A comment on He and Gaston
    Conlisk, Erin
    Conlisk, John
    Harte, John
    [J]. AMERICAN NATURALIST, 2007, 170 (04): : 651 - 654