Adaptive visual target tracking algorithm based on classified-patch kernel particle filter

被引:8
|
作者
Zhang, Guangnan [1 ,2 ,3 ]
Yang, Jinlong [3 ]
Wang, Weixing [1 ]
Hu, Yu Hen [4 ]
Liu, Jianjun [3 ]
机构
[1] Changan Univ, Coll Informat Engn, Xian 710064, Shaanxi, Peoples R China
[2] Baoji Univ Arts & Sci, Sch Comp Sci & Technol, Baoji 721076, Peoples R China
[3] Jiangnan Univ, Sch Internet Things Engn, Wuxi 214122, Peoples R China
[4] Univ Wisconsin, Dept Elect & Comp Engn, 1415 Johnson Dr, Madison, WI 53706 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Visual target tracking; K-singular value decomposition; Sparse coding; Dictionary learning; Particle filter; DISCRIMINATIVE DICTIONARY; OBJECT TRACKING; K-SVD; SPARSE;
D O I
10.1186/s13640-019-0411-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a high-performance visual target tracking (VTT) algorithm based on classified-patch kernel particle filter (CKPF). Novel features of this VTT algorithm include sparse representations of the target template using the label-consistent K-singular value decomposition (LC-KSVD) algorithm; Gaussian kernel density particle filter to facilitate candidate template generation and likelihood matching score evaluation; and an occlusion detection method using sparse coefficient histogram (ASCH). Experimental results validate superior performance of the proposed tracking algorithm over state-of-the-art visual target tracking algorithms in scenarios that include occlusion, background clutter, illumination change, target rotation, and scale changes.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Visual Tracking Based on Adaptive Background Modeling and Improved Particle Filter
    Li, Xutang
    Lan, Shanzhen
    Jiang, Yue
    Xu, Pin
    [J]. 2016 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2016, : 469 - 473
  • [42] A research of target tracking algorithm based on deep learning and kernel correlation filter
    Sun, Shengtao
    Gong, Jibing
    Li, Yangyang
    Wang, Lizhe
    Wang, Kaisheng
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [43] Kernel particle filter: Iterative sampling for efficient visual tracking
    Chang, C
    Ansari, R
    [J]. 2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, 2003, : 977 - 980
  • [44] Multi-target Tracking Based on Improved Particle Filter Algorithm
    Tan Yumei
    Ling Yongfa
    Wang Hui
    Yang Longwen
    [J]. 2017 INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS, ELECTRONICS AND CONTROL (ICCSEC), 2017, : 1285 - 1288
  • [45] An improved particle filter algorithm based on neural network for target tracking
    Wen, Qin
    Peng Qicong
    [J]. INTELLIGENT INFORMATION PROCESSING III, 2006, 228 : 297 - +
  • [46] Algorithm of multi-target tracking based on improved particle filter
    Liu, Guo-Cheng
    Wang, Yong-Ji
    [J]. Kongzhi yu Juece/Control and Decision, 2009, 24 (02): : 317 - 320
  • [47] Particle filter target tracking algorithm based on MCMC iteration cubature
    Gao, Song
    Liu, Yenan
    Chen, Chaobo
    [J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2015, 8 (09) : 307 - 318
  • [48] The new approach for infrared target tracking based on the particle filter algorithm
    Sun Hang
    Han Hong-xia
    [J]. INTERNATIONAL SYMPOSIUM ON PHOTOELECTRONIC DETECTION AND IMAGING 2011: ADVANCES IN INFRARED IMAGING AND APPLICATIONS, 2011, 8193
  • [49] Improved multiple model target tracking algorithm based on particle filter
    Chen, Zhimin
    Qu, Yuanxin
    Liu, Bing
    Bo, Yuming
    Fu, Minhui
    Chen, Jiahong
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2016, 230 (04) : 747 - 759
  • [50] Target tracking based on particle filter algorithm with multiple cues fusion
    Zhang, Tao
    Fei, Shumin
    [J]. 26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 1660 - 1665