Numerical simulation of compression of the single spherical vapor bubble on a basis of the uniform model

被引:9
|
作者
Yang, Hyunik [2 ]
Desyatov, A. V. [1 ]
Cherkasov, S. G. [1 ]
Il'mov, D. N. [1 ]
McConnell, D. B. [3 ]
机构
[1] Keldysh Res Ctr, Moscow 125438, Russia
[2] Hanyang Univ, Dept Mech Engn, Ansan, South Korea
[3] Fus Res, Port Coquitlam, BC V3C 6M2, Canada
关键词
steam bubble; phase change; heat-mass transfer; sonoluminescence; cavitation;
D O I
10.1016/j.ijheatmasstransfer.2007.10.014
中图分类号
O414.1 [热力学];
学科分类号
摘要
The problem of the response of a single spherical vapor bubble is considered for the case of an abrupt increase of pressure in the surrounding infinite liquid. The mathematical model adopted is based on the assumption of the uniformity of pressure, temperature and density throughout the bubble volume. The temperature field around the bubble is calculated using the energy equation for the liquid. Thermal-physical characteristics, exclusive of specific heats of the liquid and vapor, are considered to be temperature-dependent. A notable feature of the model is the exact fulfillment of the integral law of conservation of system energy, disregarding the relatively small vapor kinetic energy. The initial bubble radius and the pressure rise in the liquid were varied in the calculations. It was found that the temperature increment in the bubble due to vapor condensation and heat exchange with the liquid is approximately two orders of magnitude less than that due to adiabatic compression. To study the effect of condensation, calculations were performed in which phase transitions were artificially blocked at the bubble boundary. It was found that the character of the process in the latter case changes both quantitatively and qualitatively; in particular, the temperature increment increases by about an order of magnitude. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3615 / 3622
页数:8
相关论文
共 50 条
  • [41] A numerical simulation of single bubble growth in subcooled boiling water
    Cheng, Ning
    Guo, Yun
    Peng, Changhong
    ANNALS OF NUCLEAR ENERGY, 2019, 124 : 179 - 186
  • [42] Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film
    Tao Yu-Jia
    Huai Xiu-Lan
    Li Zhi-Gang
    CHINESE PHYSICS LETTERS, 2009, 26 (07)
  • [43] Numerical simulation of growth of a vapor bubble during flow boiling of water in a microchannel
    Mukherjee, A
    Kandlikar, SG
    MICROFLUIDICS AND NANOFLUIDICS, 2005, 1 (02) : 137 - 145
  • [44] Numerical simulation of growth of a vapor bubble during flow boiling of water in a microchannel
    Abhijit Mukherjee
    Satish G. Kandlikar
    Microfluidics and Nanofluidics, 2005, 1 : 137 - 145
  • [45] Thermal processes in compression of a vapor bubble in liquid hydrocarbon based on the homobaric model
    D. N. Il’mov
    S. G. Cherkasov
    High Temperature, 2012, 50 : 631 - 638
  • [46] Thermal processes in compression of a vapor bubble in liquid hydrocarbon based on the homobaric model
    Il'mov, D. N.
    Cherkasov, S. G.
    HIGH TEMPERATURE, 2012, 50 (05) : 631 - 638
  • [47] Numerical Simulation of Bubble Size Distribution in Single Snorkel Furnace (SSF) with Population Balance Model (PBM)
    Qi, Fengsheng
    Ye, Nan
    Liu, Zhongqiu
    Cheung, Sherman C. P.
    Li, Baokuan
    METALS, 2023, 13 (02)
  • [48] Numerical simulation of single bubble motion fragmentation mechanism in Venturi-type bubble generator
    Chen, Junliang
    Lei, Mao
    Lu, Shaobo
    Xiao, Xiaolong
    Yao, Mingxiu
    Li, Qiang
    MECHANICS & INDUSTRY, 2024, 25
  • [49] Numerical simulation of single bubble breaking behavior in Venturi microbubble generator
    Ding, Guodong
    Chen, Jiaqing
    Cai, Xiaolei
    Ye, Fan
    Li, Zhenlin
    Ji, Yipeng
    Guo, Jing
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39 (07): : 2590 - 2598
  • [50] Numerical simulation of single bubble dynamics under acoustic standing waves
    Qiu, Sicong
    Ma, Xiaojian
    Huang, Biao
    Li, Daqin
    Wang, Guoyu
    Zhang, Mindi
    ULTRASONICS SONOCHEMISTRY, 2018, 49 : 196 - 205