Learning in a Fuzzy Random Forest Ensemble from Imperfect Data

被引:0
|
作者
Cadenas, Jose M. [1 ]
Carmen Garrido, M. [1 ]
Martinez, Raquel [1 ]
机构
[1] Univ Murcia, Fac Informat, Dpt Engn Informat & Commun, Murcia, Spain
关键词
Fuzzy Sets; Imperfect data; Classification Technique;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Instrument errors or noise interference during experiments may lead to incomplete data when measuring a specific attribute. Obtaining models from imperfect data is a topic currently being treated with more interest. In this paper, we present the learning phase of a Fuzzy Random Forest ensemble for classification from imperfect data. We perform experiments with imperfect datasets created for this purpose and datasets used in other papers to show the express the true nature of imperfect information.
引用
收藏
页码:277 / 282
页数:6
相关论文
共 50 条
  • [41] On the Robustness of Random Forest Against Untargeted Data Poisoning: An Ensemble-Based Approach
    Anisetti, Marco
    Ardagna, Claudio A.
    Balestrucci, Alessandro
    Bena, Nicola
    Damiani, Ernesto
    Yeun, Chan Yeob
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2023, 8 (04): : 540 - 554
  • [42] A feature extraction method for small sample data based on optimal ensemble random forest
    Zhang W.
    Zhang H.
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2022, 40 (06): : 1261 - 1268
  • [43] Fuzzy c-Means and Cluster Ensemble with Random Projection for Big Data Clustering
    Ye, Mao
    Liu, Wenfen
    Wei, Jianghong
    Hu, Xuexian
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [44] Ensemble-based kernel learning for a class of data assimilation problems with imperfect forward simulators
    Luo, Xiaodong
    PLOS ONE, 2019, 14 (07):
  • [45] Application of random forest machine learning techniques on mixed data from breast cancer studies
    Quist, Jelmar
    Taylor, Lawson
    Staaf, Johan
    Grigoriadis, Anita
    CANCER RESEARCH, 2020, 80 (16)
  • [46] Combination Methods in a Fuzzy Random Forest
    Bonissone, P. P.
    Cadenas, J. M.
    Garrido, M. C.
    Diaz-Valladares, R. A.
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 1793 - +
  • [47] Belief Entropy Tree and Random Forest: Learning from Data with Continuous Attributes and Evidential Labels
    Gao, Kangkai
    Wang, Yong
    Ma, Liyao
    ENTROPY, 2022, 24 (05)
  • [48] Weighted decisions in a Fuzzy Random Forest
    Bonissone, P. P.
    Cadenas, J. M.
    Garrido, M. C.
    Diaz-Valladares, R. A.
    Martinez, R.
    PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 1553 - 1558
  • [49] Learning fuzzy rules from data
    Finn, GD
    NEURAL COMPUTING & APPLICATIONS, 1999, 8 (01): : 9 - 24
  • [50] Learning Fuzzy Rules from Data
    G.D. Finn
    Neural Computing & Applications, 1999, 8 : 9 - 24