Efficient Realization of Unitary Transformation at the Quantum Speed Limit

被引:0
|
作者
Zhang, Xiong-Peng [1 ]
Shao, Bin [2 ]
机构
[1] East China Univ Technol, Sch Sci, Nanchang 330013, Jiangxi, Peoples R China
[2] Beijing Inst Technol, Sch Phys, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum control; Speed limit; Unitary transformation; TIME UNCERTAINTY RELATION; CONTROL-SYSTEMS; CONTROLLABILITY; DYNAMICS;
D O I
10.1007/s10773-020-04442-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We numerically investigate the minimum time required to implement a target unitary transformation in a qubit network in which each qubit can be locally controlled. The speed limits are explicitly analyzed for qubit graphs used to represent simple models of a Ising spin chain, or a central spin which describes electron-nuclear spin interactions in NV centers. We study the tightness of the obtained speed limits via comparing with the bound derived by Arenz et al. It is shown that the limits capture the coupling constant present in the graph dependence of the minimum evolution time remarkably well.
引用
收藏
页码:1763 / 1771
页数:9
相关论文
共 50 条
  • [41] Operational definition of a quantum speed limit
    Shao, Yanyan
    Liu, Bo
    Zhang, Mao
    Yuan, Haidong
    Liu, Jing
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [42] Geometric derivation of the quantum speed limit
    Jones, Philip J.
    Kok, Pieter
    PHYSICAL REVIEW A, 2010, 82 (02):
  • [43] Quantum unitary transformation corresponding to the classical square canonical transformation and its connected quantum systems
    Yeon, KH
    Hong, SK
    Um, CI
    George, TF
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2005, 46 (03) : 591 - 596
  • [44] REALIZATION OF THE PROBABILITY LAWS IN THE QUANTUM CENTRAL LIMIT THEOREMS BY A QUANTUM WALK
    Machida, Takuya
    QUANTUM INFORMATION & COMPUTATION, 2013, 13 (5-6) : 430 - 438
  • [45] Quantum speed limit for complex dynamics
    Zhang, Mao
    Yu, Huai-Ming
    Liu, Jing
    NPJ QUANTUM INFORMATION, 2023, 9 (01)
  • [46] Quantum Speed Limit for Physical Processes
    Taddei, M. M.
    Escher, B. M.
    Davidovich, L.
    de Matos Filho, R. L.
    PHYSICAL REVIEW LETTERS, 2013, 110 (05)
  • [47] Quantum speed limit for thermal states
    Il'in, Nikolai
    Lychkovskiy, Oleg
    PHYSICAL REVIEW A, 2021, 103 (06)
  • [49] Learning Unitary Transformation by Quantum Machine Learning Model
    Huang, Yi-Ming
    Li, Xiao-Yu
    Zhu, Yi-Xuan
    Lei, Hang
    Zhu, Qing-Sheng
    Yang, Shan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (01): : 789 - 803
  • [50] Realization of any transformation of pure quantum states
    Liang, LM
    Chen, PX
    Li, CZ
    Huang, MQ
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2001, 3 (03) : 178 - 180