Dealing with Missing Data: A Comparative Exploration of Approaches Using the Integrated City Sustainability Database

被引:43
|
作者
Curley, Cali [1 ]
Krause, Rachel M. [2 ]
Feiock, Richard [3 ,4 ,5 ]
Hawkins, Christopher V. [6 ]
机构
[1] Indiana Univ Purdue Univ, Sch Publ & Environm Affairs, Indianapolis, IN 46202 USA
[2] Univ Kansas, Sch Publ Affairs & Adm, Lawrence, KS 66045 USA
[3] Florida State Univ, Tallahassee, FL 32306 USA
[4] Florida State Univ, Askew Sch, Publ Adm & Policy, Tallahassee, FL 32306 USA
[5] Florida State Univ, FSU Local Governance Res Lab, Tallahassee, FL 32306 USA
[6] Univ Cent Florida, Sch Publ Adm, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
imputation; sustainability; urban policy; missing data; HOT DECK IMPUTATION; MULTIPLE IMPUTATION; CLIMATE PROTECTION; COMMITMENT; INDICATOR; ADOPTION; POLICIES; VALUES; RISK;
D O I
10.1177/1078087417726394
中图分类号
TU98 [区域规划、城乡规划];
学科分类号
0814 ; 082803 ; 0833 ;
摘要
Studies of governments and local organizations using survey data have played a critical role in the development of urban studies and related disciplines. However, missing data pose a daunting challenge for this research. This article seeks to raise awareness about the treatment of missing data in urban studies research by comparing and evaluating three commonly used approaches to deal with missing data-listwise deletion, single imputation, and multiple imputation. Comparative analyses illustrate the relative performance of these approaches using the second-generation Integrated City Sustainability Database (ICSD). The results demonstrate the benefit of using an approach to missing data based on multiple imputation, using a theoretically informed and statistically supported set of predictor variables to develop a more complete sample that is free of issues raised by nonresponse in survey data. The results confirm the usefulness of the ICSD in the study of environmental and sustainability and other policy in U.S. cities. We conclude with a discussion of results and provide a set of recommendations for urban researcher scholars.
引用
收藏
页码:591 / 615
页数:25
相关论文
共 50 条
  • [21] Handing incomplete and missing data in water network database using imputation methods
    Kabir, Golam
    Tesfamariam, Solomon
    Hemsing, Jordi
    Sadiq, Rehan
    SUSTAINABLE AND RESILIENT INFRASTRUCTURE, 2020, 5 (06) : 365 - 377
  • [22] DATA DRIVEN INTEGRATED DESIGN SPACE EXPLORATION USING iSOM
    Sushil, Rashmi Rama
    Baby, Mathew
    Sharma, Gehendra
    Nellippallil, Anand Balu
    Ramu, Palaniappan
    PROCEEDINGS OF ASME 2022 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2022, VOL 3A, 2022,
  • [23] Enriching integrated statistical open city data by combining equational knowledge and missing value imputation
    Bischof, Stefan
    Harth, Andreas
    Kaempgen, Benedikt
    Polleres, Axel
    Schneider, Patrik
    JOURNAL OF WEB SEMANTICS, 2018, 48 : 22 - 47
  • [24] Dealing With Dependent Effect Sizes in MASEM A Comparison of Different Approaches Using Empirical Data
    Stolwijk, Isidora
    Jak, Suzanne
    Eichelsheim, Veroni
    Hoeve, Machteld
    ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY, 2022, 230 (01): : 16 - 32
  • [25] Missing data imputation using utility-based regression and sampling approaches
    Haliduola, Halimu N.
    Bretz, Frank
    Mansmann, Ulrich
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 226
  • [26] A Systematic Review of Reporting and Handling of Missing Data in Observational Studies Using the UNOS Database
    Baker, W. L.
    Moore, T. E.
    Baron, E.
    Kittleson, M.
    Parker, W.
    Jaiswal, A.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2024, 43 (04): : S341 - S341
  • [27] Using Principal Component Analysis and Autoassociative Neural Networks to Estimate Missing Data in a Database
    Mistry, Jaisheel
    Nelwamondo, Fulufhelo V.
    Marwala, Tshilidzi
    WMSCI 2008: 12TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL V, PROCEEDINGS, 2008, : 24 - 29
  • [28] A systematic review of reporting and handling of missing data in observational studies using the UNOS database
    Baker, William L.
    Moore, Timothy E.
    Baron, Eric
    Kittleson, Michelle
    Parker, William F.
    Jaiswal, Abhishek
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2025, 44 (03): : 462 - 468
  • [29] Estimation of missing values in a food property database by matrix completion using PCA-based approaches
    Mercier, Samuel
    Mondor, Martin
    Marcos, Bernard
    Moresoli, Christine
    Villeneuve, Sebastien
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2017, 166 : 37 - 48
  • [30] Filling Missing and Extending Significant Wave Height Measurements Using Neural Networks and an Integrated Surface Database
    Bujak, Damjan
    Bogovac, Tonko
    Carevic, Dalibor
    Milicevic, Hanna
    WIND, 2023, 3 (02): : 151 - 169