Asymptotic expansion of Fourier coefficients of reciprocals of Eisenstein series

被引:0
|
作者
Heim, Bernhard [1 ]
Neuhauser, Markus [1 ,2 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math, D-52056 Aachen, Germany
[2] Kutaisi Int Univ, 5-7 Youth Ave, Kutaisi 4600, Georgia
来源
RAMANUJAN JOURNAL | 2022年 / 58卷 / 03期
关键词
Eisenstein series; Fourier coefficients; Meromorphic modular forms; Polynomials; Ramanujan; Recurrence relations; RAMANUJAN; QUOTIENTS;
D O I
10.1007/s11139-022-00563-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give a classification of the asymptotic expansion of the q-expansion of reciprocals of Eisenstein series E-k of weight k for the modular group SL2(Z). For k >= 12 even, this extends results of Hardy and Ramanujan, and Berndt, Bialek, and Yee, utilizing the Circle Method on the one hand, and results of Petersson, and Bringmann and Kane, developing a theory of meromorphic Poincard series on the other. We follow a uniform approach, based on the zeros of the Eisenstein series with the largest imaginary part. These special zeros provide information on the singularities of the Fourier expansion of 1/E-k (z) with respect to q = e(2 pi iz).
引用
收藏
页码:871 / 887
页数:17
相关论文
共 50 条