Adaptive estimation of the transition density of a Markov chain

被引:15
|
作者
Lacour, Claire [1 ]
机构
[1] Univ Paris 05, Lab MAP5, F-75270 Paris, France
关键词
adaptive estimation; transition density; Markov chain; model selection; penalized contrast;
D O I
10.1016/j.anihpb.2006.09.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper a new estimator for the transition density pi of an homogeneous Markov chain is considered. We introduce an original contrast derived from regression framework and we use a model selection method to estimate pi under mild conditions. The resulting estimate is adaptive with an optimal rate of convergence over a large range of anisotropic Besov spaces B-2,B-infinity ((alpha 1, alpha 2)). Some simulations are also presented. (c) 2006 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:571 / 597
页数:27
相关论文
共 50 条