Machine learning-aided design and prediction of cementitious composites containing graphite and slag powder

被引:88
|
作者
Sun, Junbo [1 ]
Ma, Yongzhi [2 ]
Li, Jianxin [2 ]
Zhang, Junfei [3 ]
Ren, Zhenhua [4 ]
Wang, Xiangyu [5 ,6 ]
机构
[1] Curtin Univ, Sch Design & Built Environm, Perth, WA 6102, Australia
[2] Deakin Univ, Sch Informat Technol, Geelong, Vic, Australia
[3] Hebei Univ Technol, Sch Civil & Transportat Engn, 5340 Xiping Rd, Tianjin 300401, Peoples R China
[4] Hunan Inst Engn, Sch Bldg Engn, Xiangtan 411228, Hunan, Peoples R China
[5] East China Jiao Tong Univ, Sch Civil Engn & Architecture, Nanchang 330013, Jiangxi, Peoples R China
[6] Curtin Univ, Australasian Joint Res Ctr Bldg Informat Modellin, Perth, WA 6102, Australia
来源
关键词
Random forest; Beetle antennae search; Machine learning; Graphite; Waste slag; Compressive strength; Electrical resistivity;
D O I
10.1016/j.jobe.2021.102544
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The electrically conductive cementitious composite (ECCC) offers plenty of advantages such as high conductivity and strain sensitivity. The ECCC can also act as a conductive sensor in a cathodic protection system for structural health monitoring. Before the ECCC application, it is essential to understand and predict the uniaxial compressive stress (UCS) and electrical resistivity. In this study, we produced ECCC with three conductive fillers: graphite powder (GP), waste steel slag (SS) as well as ground granulated blast-furnace slag (GGBS). By changing the content levels of the three conductive fillers, cement and curing ages, we prepared 81 mixture proportions for UCS test and 108 mixture proportions for resistivity test. The results show that although GP improves the conductivity more significantly than the other conductive fillers but it simultaneously has a higher negative influence on UCS. Meanwhile, slag solids (GGBS and SS) enhance the conductive performance but reduce UCS after their replacement ratio is larger than 20%. Compared with GGBS, ECCC containing SS has higher UCS and conductivity. Besides, we proposed a random forest (RF) based machine learning model to predict the UCS and resistivity. The hyperparameters of the RF model were tuned by the beetle antennae search (BAS) algorithm. This hybrid BAS-RF model has high prediction accuracy, as indicated by high correlation coefficients on test sets (0.986 for UCS and 0.98 for resistivity, respectively). We simulated the influence of different conductive fillers on UCS and conductivity using the developed BAS-RF model. The simulation results agree well with the results obtained by laboratory experiments. This study offers a new idea to use waste slags to produce ECCC and paves the way to intelligent construction.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Machine learning-aided prediction of shrinkage in modern concrete: Focus on mix proportions and SCMs
    Hilloulin, Benoit
    Ummunakwe, Rejoice
    JOURNAL OF BUILDING ENGINEERING, 2024, 98
  • [32] Machine learning-aided risk stratification system for the prediction o coronary artery disease
    Li, Dan
    Xiong, Guanglian
    Zeng, Hesong
    Zhou, Qiang
    Jiang, Jiangang
    Guo, Xiaomei
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2021, 326 : 30 - 34
  • [33] Learning-Aided Heuristics Design for Storage System
    Tang, Yingtian
    Lu, Han
    Li, Xijun
    Chen, Lei
    Yuan, Mingxuan
    Zeng, Jia
    SIGMOD '21: PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2021, : 2597 - 2601
  • [34] Machine learning-aided engineering of hydrolases for PET depolymerization
    Lu, Hongyuan
    Diaz, Daniel J.
    Czarnecki, Natalie J.
    Zhu, Congzhi
    Kim, Wantae
    Shroff, Raghav
    Acosta, Daniel J.
    Alexander, Bradley R.
    Cole, Hannah O.
    Zhang, Yan
    Lynd, Nathaniel A.
    Ellington, Andrew D.
    Alper, Hal S.
    NATURE, 2022, 604 (7907) : 662 - +
  • [35] DESIGN AND IMPLEMENTATION OF LEARNING-AIDED SOFTWARE FOR CHILDREN
    Alatishe, Adeyemi
    Anuoluwapo, Daniel
    Atayero, Aderemi
    EDULEARN14: 6TH INTERNATIONAL CONFERENCE ON EDUCATION AND NEW LEARNING TECHNOLOGIES, 2014, : 6296 - 6302
  • [36] Biosensor and machine learning-aided engineering of an amaryllidaceae enzyme
    d'Oelsnitz, Simon
    Diaz, Daniel J.
    Kim, Wantae
    Acosta, Daniel J.
    Dangerfield, Tyler L.
    Schechter, Mason W.
    Minus, Matthew B.
    Howard, James R.
    Do, Hannah
    Loy, James M.
    Alper, Hal S.
    Zhang, Y. Jessie
    Ellington, Andrew D.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [37] Machine learning-aided engineering of hydrolases for PET depolymerization
    Hongyuan Lu
    Daniel J. Diaz
    Natalie J. Czarnecki
    Congzhi Zhu
    Wantae Kim
    Raghav Shroff
    Daniel J. Acosta
    Bradley R. Alexander
    Hannah O. Cole
    Yan Zhang
    Nathaniel A. Lynd
    Andrew D. Ellington
    Hal S. Alper
    Nature, 2022, 604 : 662 - 667
  • [38] Machine Learning-Aided Sparse Direction of Arrival Estimation
    Raiguru, Priyadarshini
    Kumar Rout, Susanta
    Sahani, Mrutyunjaya
    Mishra, Rabindra Kishore
    IEEE SENSORS JOURNAL, 2024, 24 (22) : 38125 - 38134
  • [39] Performance prediction and analysis of engineered cementitious composites based on machine learning
    Chen, Wenguang
    Fediuk, Roman
    Yu, Jie
    Nikolayevich, Kovshar
    Vatin, Nikolai
    Bazarov, Dilshod
    Yu, Kequan
    DEVELOPMENTS IN THE BUILT ENVIRONMENT, 2024, 18
  • [40] Learning-Aided Stochastic Network Optimization With State Prediction
    Huang, Longbo
    Chen, Minghua
    Liu, Yunxin
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2018, 26 (04) : 1810 - 1820