Machine learning-aided design and prediction of cementitious composites containing graphite and slag powder

被引:88
|
作者
Sun, Junbo [1 ]
Ma, Yongzhi [2 ]
Li, Jianxin [2 ]
Zhang, Junfei [3 ]
Ren, Zhenhua [4 ]
Wang, Xiangyu [5 ,6 ]
机构
[1] Curtin Univ, Sch Design & Built Environm, Perth, WA 6102, Australia
[2] Deakin Univ, Sch Informat Technol, Geelong, Vic, Australia
[3] Hebei Univ Technol, Sch Civil & Transportat Engn, 5340 Xiping Rd, Tianjin 300401, Peoples R China
[4] Hunan Inst Engn, Sch Bldg Engn, Xiangtan 411228, Hunan, Peoples R China
[5] East China Jiao Tong Univ, Sch Civil Engn & Architecture, Nanchang 330013, Jiangxi, Peoples R China
[6] Curtin Univ, Australasian Joint Res Ctr Bldg Informat Modellin, Perth, WA 6102, Australia
来源
关键词
Random forest; Beetle antennae search; Machine learning; Graphite; Waste slag; Compressive strength; Electrical resistivity;
D O I
10.1016/j.jobe.2021.102544
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The electrically conductive cementitious composite (ECCC) offers plenty of advantages such as high conductivity and strain sensitivity. The ECCC can also act as a conductive sensor in a cathodic protection system for structural health monitoring. Before the ECCC application, it is essential to understand and predict the uniaxial compressive stress (UCS) and electrical resistivity. In this study, we produced ECCC with three conductive fillers: graphite powder (GP), waste steel slag (SS) as well as ground granulated blast-furnace slag (GGBS). By changing the content levels of the three conductive fillers, cement and curing ages, we prepared 81 mixture proportions for UCS test and 108 mixture proportions for resistivity test. The results show that although GP improves the conductivity more significantly than the other conductive fillers but it simultaneously has a higher negative influence on UCS. Meanwhile, slag solids (GGBS and SS) enhance the conductive performance but reduce UCS after their replacement ratio is larger than 20%. Compared with GGBS, ECCC containing SS has higher UCS and conductivity. Besides, we proposed a random forest (RF) based machine learning model to predict the UCS and resistivity. The hyperparameters of the RF model were tuned by the beetle antennae search (BAS) algorithm. This hybrid BAS-RF model has high prediction accuracy, as indicated by high correlation coefficients on test sets (0.986 for UCS and 0.98 for resistivity, respectively). We simulated the influence of different conductive fillers on UCS and conductivity using the developed BAS-RF model. The simulation results agree well with the results obtained by laboratory experiments. This study offers a new idea to use waste slags to produce ECCC and paves the way to intelligent construction.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Machine learning-aided generative molecular design
    Du, Yuanqi
    Jamasb, Arian R.
    Guo, Jeff
    Fu, Tianfan
    Harris, Charles
    Wang, Yingheng
    Duan, Chenru
    Lio, Pietro
    Schwaller, Philippe
    Blundell, Tom L.
    NATURE MACHINE INTELLIGENCE, 2024, : 589 - 604
  • [2] Machine learning-aided design optimization of a mechanical micromixer
    Granados-Ortiz, F-J
    Ortega-Casanova, J.
    PHYSICS OF FLUIDS, 2021, 33 (06)
  • [3] Machine Learning-Aided Process Design: Modeling and Prediction of Transformation Temperature for Pearlitic Steel
    Qiao, Ling
    Zhu, Jingchuan
    Wang, Yuan
    STEEL RESEARCH INTERNATIONAL, 2022, 93 (01)
  • [4] Hydration Characteristics of Cementitious Composites Containing Calcium Silicate Slag Powder
    Ru Bai
    Ju Zhang
    Changwang Yan
    Shuguang Liu
    Xiaoxiao Wang
    KSCE Journal of Civil Engineering, 2023, 27 : 2952 - 2963
  • [5] Hydration Characteristics of Cementitious Composites Containing Calcium Silicate Slag Powder
    Bai, Ru
    Zhang, Ju
    Yan, Changwang
    Liu, Shuguang
    Wang, Xiaoxiao
    KSCE JOURNAL OF CIVIL ENGINEERING, 2023, 27 (07) : 2952 - 2963
  • [6] Machine learning-aided cost prediction and optimization in construction operations
    Sharma, Virok
    Zaki, Mohd
    Jha, Kumar Neeraj
    Krishnan, N. M. Anoop
    ENGINEERING CONSTRUCTION AND ARCHITECTURAL MANAGEMENT, 2022, 29 (03) : 1241 - 1257
  • [7] Design of a machine learning-aided screening framework for antibiofilm peptides
    Puchakayala, Hema Chandra
    Bhatnagar, Pranshul
    Nambiar, Pranav
    Dutta, Arnab
    Mitra, Debirupa
    DIGITAL CHEMICAL ENGINEERING, 2023, 8
  • [8] Machine Learning-Aided Design of Materials with Target Elastic Properties
    Zeng, Shuming
    Li, Geng
    Zhao, Yinchang
    Wang, Ruirui
    Ni, Jun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (08): : 5042 - 5047
  • [9] Development of Machine Learning-Aided Rapid CFD Prediction for Optimal Urban Wind Environment Design
    Baitureyeva, Aiymzhan
    Yang, Tong
    Wang, Hua Sheng
    SUSTAINABLE CITIES AND SOCIETY, 2025, 121
  • [10] Machine learning-aided design of aluminum alloys with high performance
    Chaudry, Umer Masood
    Hamad, Kotiba
    Abuhmed, Tamer
    MATERIALS TODAY COMMUNICATIONS, 2021, 26