Optimal truss design by interior-point methods

被引:48
|
作者
Jarre, F
Kocvara, M
Zowe, J
机构
[1] Univ Wurzburg, Inst Angew Math & Stat, D-97074 Wurzburg, Germany
[2] Univ Erlangen Nurnberg, Inst Angew Math, D-91058 Erlangen, Germany
关键词
interior-point methods; truss topology design; convex programming;
D O I
10.1137/S1052623496297097
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article presents a primal-dual predictor-corrector interior-point method for solving quadratically constrained convex optimization problems that arise from truss design problems. We investigate certain special features of the problem, discuss fundamental differences of interior-point methods for linearly and nonlinearly constrained problems, extend Mehrotra's predictor-corrector strategy to nonlinear programs, and establish convergence of a long step method. Numerical experiments on large scale problems illustrate the surprising efficiency of the method.
引用
收藏
页码:1084 / 1107
页数:24
相关论文
共 50 条
  • [31] Interior-point algorithms, penalty methods and equilibrium problems
    Benson, Hande Y.
    Sen, Arun
    Shanno, David F.
    Vanderbei, Robert J.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2006, 34 (02) : 155 - 182
  • [32] Interior-point methods or massive support vector machines
    Ferris, MC
    Munson, TS
    SIAM JOURNAL ON OPTIMIZATION, 2003, 13 (03) : 783 - 804
  • [33] The Accuracy of Interior-Point Methods Based on Kernel Functions
    Vieira, Manuel V. C.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 155 (02) : 637 - 649
  • [35] Application of Interior-Point Methods to Model Predictive Control
    C. V. Rao
    S. J. Wright
    J. B. Rawlings
    Journal of Optimization Theory and Applications, 1998, 99 : 723 - 757
  • [36] The Accuracy of Interior-Point Methods Based on Kernel Functions
    Manuel V. C. Vieira
    Journal of Optimization Theory and Applications, 2012, 155 : 637 - 649
  • [37] Group Symmetry in Interior-Point Methods for Semidefinite Program
    Yoshihiro Kanno
    Makoto Ohsaki
    Kazuo Murota
    Naoki Katoh
    Optimization and Engineering, 2001, 2 : 293 - 320
  • [38] Group Symmetry in Interior-Point Methods for Semidefinite Program
    Kanno, Yoshihiro
    Ohsaki, Makoto
    Murota, Kazuo
    Katoh, Naoki
    OPTIMIZATION AND ENGINEERING, 2001, 2 (03) : 293 - 320
  • [39] Lagrangian dual interior-point methods for semidefinite programs
    Fukuda, M
    Kojima, M
    Shida, M
    SIAM JOURNAL ON OPTIMIZATION, 2002, 12 (04) : 1007 - 1031
  • [40] Interior-Point Algorithms, Penalty Methods and Equilibrium Problems
    Hande Y. Benson
    Arun Sen
    David F. Shanno
    Robert J. Vanderbei
    Computational Optimization and Applications, 2006, 34 : 155 - 182