Bayesian Estimation and Prediction for a Hybrid Censored Lognormal Distribution

被引:26
|
作者
Singh, Sukhdev [1 ]
Tripathi, Yogesh Mani [1 ]
机构
[1] Indian Inst Technol, Dept Math, Patna, Bihar, India
关键词
Bayes estimate; equal-tail interval; Fisher information matrix; HPD interval; importance sampling; Lindley method; maximum-likelihood estimate; one-sample prediction; OpenBUGS; two-sample prediction; WEIBULL DISTRIBUTION; EXPONENTIAL-DISTRIBUTION; RAYLEIGH DISTRIBUTION; PARAMETER-ESTIMATION; ORDER-STATISTICS; INFERENCE; INTERVALS;
D O I
10.1109/TR.2015.2494370
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
For a lognormal distribution, in Bayesian framework, we consider estimation of unknown parameters and prediction of future observable when it is known that samples are hybrid censored. We derive Bayes estimates with respect to the squared error loss function under both informative and non-informative prior situations. These estimates are then computed using Lindley method, importance sampling, and OpenBUGS software. For comparison purposes, we also obtain maximum-likelihood estimates using expectation-maximization (EM) algorithm, and compute Fisher information matrix as well. Predictive estimates of future observable are obtained under the setup of one- and two-sample prediction problems. We further compute equal-tail and highest posterior density predictive intervals, the corresponding average interval length and coverage percentage. Proposed methods of estimation and prediction are compared numerically, and comments are made based on a simulation study. Two real data sets are also analyzed for illustration purposes.
引用
收藏
页码:782 / 795
页数:14
相关论文
共 50 条
  • [31] Bayesian Estimation for the Birnbaum-Saunders Distribution in the Presence of Censored Data
    Moala, F. A.
    Achcar, J. A.
    Gimenez, R. P.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (10) : 3187 - 3192
  • [32] Estimation and prediction for a progressively censored generalized inverted exponential distribution
    Dey, Sanku
    Singh, Sukhdev
    Tripathi, Yogesh Mani
    Asgharzadeh, A.
    [J]. STATISTICAL METHODOLOGY, 2016, 32 : 185 - 202
  • [33] Estimation for the generalized Gompertz distribution of hybrid progressive censored samples
    Alrajhi, Sharifah
    Almarashi, Abdullah M.
    Algarni, Ali
    Amein, M. M.
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (03) : 2693 - 2702
  • [34] Parameter estimation of the hybrid censored log-normal distribution
    Dube, Sulabh
    Pradhan, Biswabrata
    Kundu, Debasis
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (03) : 275 - 287
  • [35] Estimation of parameters of a lognormal distribution
    Shen, WH
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 1998, 2 (02): : 243 - 250
  • [36] Bayesian Estimation and Prediction for Discrete Weibull Distribution
    Duangsaphon, Monthira
    Santimalai, Rateeya
    Volodin, Andrei
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (11) : 4693 - 4703
  • [37] Bayesian Estimation and Prediction for Discrete Weibull Distribution
    Monthira Duangsaphon
    Rateeya Santimalai
    Andrei Volodin
    [J]. Lobachevskii Journal of Mathematics, 2023, 44 : 4693 - 4703
  • [38] ESTIMATION OF STATISTICAL PARAMETERS FOR CENSORED LOGNORMAL HYDRAULIC CONDUCTIVITY MEASUREMENTS
    WEN, XH
    [J]. MATHEMATICAL GEOLOGY, 1994, 26 (06): : 717 - 731
  • [39] Bayesian Prediction Regions and Density Estimation With Type-2 Censored Data
    Asgharzadeh, Akbar
    Marchand, Eric
    Nik, Ali Saadati
    [J]. IEEE TRANSACTIONS ON RELIABILITY, 2024,
  • [40] FITTING THE LOGNORMAL-DISTRIBUTION TO CENSORED LABOR WASTAGE DATA
    AGRAFIOTIS, GK
    [J]. MATHEMATICAL SOCIAL SCIENCES, 1985, 10 (03) : 269 - 274