String background fields and the Riemann-Cartan geometry

被引:2
|
作者
Vasilic, Milovan [1 ]
机构
[1] Inst Phys, Belgrade 11001, Serbia
关键词
D O I
10.1088/0264-9381/28/7/075008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study classical dynamics of cylindrical membranes wrapped around the extra compact dimension of a (D+1)-dimensional Riemann-Cartan spacetime. The world-sheet equations and boundary conditions are obtained from the universally valid conservation equations of the stress-energy and spin tensors. Specifically, we consider membranes made of macroscopic matter with maximally symmetric distribution of spin. In the narrow membrane limit, the dimensionally reduced theory is obtained. It describes how effective strings couple to the effective D-dimensional geometry. The striking coincidence with the string theory sigma-model is observed. In this correspondence, the string background fields G(mu nu), B-mu nu, A(mu) and Phi are related to the metric and torsion of the Riemann-Cartan spacetime.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Tidal heating in a Riemann-Cartan spacetime
    Hensh, Sudipta
    Liberati, Stefano
    Vitagliano, Vincenzo
    PHYSICAL REVIEW D, 2023, 107 (06)
  • [32] Deviation equation in Riemann-Cartan spacetime
    Puetzfeld, Dirk
    Obukhov, Yuri N.
    PHYSICAL REVIEW D, 2018, 97 (10)
  • [33] NEW LOOK AT THE RIEMANN-CARTAN THEORY
    AURILIA, A
    SPALLUCCI, E
    PHYSICAL REVIEW D, 1990, 42 (02): : 464 - 468
  • [34] Dirac Particle in Riemann-Cartan Spacetimes
    Obukhov, Yu. N.
    Silenko, A. J.
    Teryaev, O. V.
    PHYSICS OF PARTICLES AND NUCLEI, 2018, 49 (01) : 9 - 10
  • [35] Riemann-Cartan Gravity with Dynamical Signature
    Bondarenko, S.
    Zubkov, M. A.
    JETP LETTERS, 2022, 116 (01) : 54 - 60
  • [36] PROPERTIES OF A SPIN FLUID IN A RIEMANN-CARTAN SPACETIME
    DERITIS, R
    LAVORGNA, M
    PLATANIA, G
    STORNAIOLO, C
    PHYSICS LETTERS A, 1983, 95 (08) : 425 - 428
  • [37] Torsion Structure in Riemann-Cartan Manifold and Dislocation
    Xiguo Lee
    Marcello Baldo
    Yishi Duan
    General Relativity and Gravitation, 2002, 34 : 1569 - 1577
  • [38] Evaluation of the heat kernel in Riemann-Cartan space
    Yajima, S
    CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (09) : 2423 - 2435
  • [39] Comment on 'Braneworld remarks in Riemann-Cartan manifolds'
    Khakshournia, S.
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (17)
  • [40] Riemann-Cartan space in O-theory
    Dorofeev, V. Yu
    GRAVITATION & COSMOLOGY, 2012, 18 (02): : 100 - 103