String background fields and the Riemann-Cartan geometry

被引:2
|
作者
Vasilic, Milovan [1 ]
机构
[1] Inst Phys, Belgrade 11001, Serbia
关键词
D O I
10.1088/0264-9381/28/7/075008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study classical dynamics of cylindrical membranes wrapped around the extra compact dimension of a (D+1)-dimensional Riemann-Cartan spacetime. The world-sheet equations and boundary conditions are obtained from the universally valid conservation equations of the stress-energy and spin tensors. Specifically, we consider membranes made of macroscopic matter with maximally symmetric distribution of spin. In the narrow membrane limit, the dimensionally reduced theory is obtained. It describes how effective strings couple to the effective D-dimensional geometry. The striking coincidence with the string theory sigma-model is observed. In this correspondence, the string background fields G(mu nu), B-mu nu, A(mu) and Phi are related to the metric and torsion of the Riemann-Cartan spacetime.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] RIEMANN-CARTAN GEOMETRY OF TRIVIALIZABLE GAUGE-FIELDS
    MATTES, M
    SORG, M
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1989, 44 (03): : 222 - 238
  • [2] AN IDENTITY IN RIEMANN-CARTAN GEOMETRY
    NIEH, HT
    YAN, ML
    JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (03) : 373 - 374
  • [3] Riemann-Cartan geometry of nonlinear disclination mechanics
    Yavari, Arash
    Goriely, Alain
    MATHEMATICS AND MECHANICS OF SOLIDS, 2013, 18 (01) : 91 - 102
  • [4] Riemann-Cartan Geometry of Nonlinear Dislocation Mechanics
    Yavari, Arash
    Goriely, Alain
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (01) : 59 - 118
  • [5] Massless DKP fields in Riemann-Cartan spacetimes
    Casana, R
    Fainberg, VY
    Lunardi, JT
    Pimentel, BM
    Teixeira, RG
    CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (11) : 2457 - 2465
  • [6] Riemann-Cartan space-time in stringy geometry
    Sazdovic, B
    MATHEMATICAL, THEORETICAL AND PHENOMENOLOGICAL CHALLENGES BEYOND THE STANDARD MODEL: PERSPECTIVES OF THE BALKAN COLLABORATIONS, 2005, : 94 - 108
  • [7] BOSONIZATION IN A TWO-DIMENSIONAL RIEMANN-CARTAN GEOMETRY
    DENARDO, G
    SPALLUCCI, E
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1987, 98 (01): : 25 - 36
  • [8] SPECTRAL GEOMETRY OF THE RIEMANN-CARTAN SPACE-TIME
    OBUKHOV, YN
    NUCLEAR PHYSICS B, 1983, 212 (02) : 237 - 254
  • [9] Compatibility conditions of continua using Riemann-Cartan geometry
    Bohmer, Christian G.
    Lee, Yongjo
    MATHEMATICS AND MECHANICS OF SOLIDS, 2021, 26 (04) : 513 - 529
  • [10] Riemann-Cartan manifolds
    Gordeeva I.A.
    Pan'zhenskii V.I.
    Stepanov S.E.
    Journal of Mathematical Sciences, 2010, 169 (3) : 342 - 361