Phase diagram of Bi2Sr2CaCu2O8+δ revisited

被引:52
|
作者
Drozdov, I. K. [1 ]
Pletikosic, I [1 ,2 ]
Kim, C-K [1 ]
Fujita, K. [1 ]
Gu, G. D. [1 ]
Davis, J. C. Seamus [1 ,3 ]
Johnson, P. D. [1 ]
Bozovic, I [1 ]
Valla, T. [1 ]
机构
[1] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Cornell Univ, Dept Phys, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
关键词
HIGH-TEMPERATURE SUPERCONDUCTOR; T-C; QUANTUM OSCILLATIONS; QUASI-PARTICLE; GAP ANISOTROPY; FERMI-SURFACE; NORMAL-STATE; PSEUDOGAP; TRANSITION; EVOLUTION;
D O I
10.1038/s41467-018-07686-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In cuprate superconductors, the doping of carriers into the parent Mott insulator induces superconductivity and various other phases whose characteristic temperatures are typically plotted versus the doping level p. In most materials, p cannot be determined from the chemical composition, but it is derived from the superconducting transition temperature, T-c, using the assumption that the Tc dependence on doping is universal. Here, we present angle-resolved photoemission studies of Bi2Sr2CaCu2O8+delta, cleaved and annealed in vacuum or in ozone to reduce or increase the doping from the initial value corresponding to T-c = 91 K. We show that p can be determined from the underlying Fermi surfaces and that in-situ annealing allows mapping of a wide doping regime, covering the superconducting dome and the non-superconducting phase on the overdoped side. Our results show a surprisingly smooth dependence of the inferred Fermi surface with doping. In the highly overdoped regime, the superconducting gap approaches the value of 2 Delta(0) = (4 +/- 1)k(B)T(c)
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Inhomogeneous superconductivity in deeply underdoped Bi2Sr2CaCu2O8+δ
    Yamada, Y
    Suzuki, M
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2005, 426 : 364 - 368
  • [42] Asymmetric local displacements in the Bi2Sr2CaCu2O8+δ superconductor
    Saini, NL
    Lanzara, A
    Bianconi, A
    Oyanagi, H
    EUROPEAN PHYSICAL JOURNAL B, 2000, 18 (02): : 257 - 261
  • [43] Study of the optical conductivity of Bi2Sr2CaCu2O8+δ material
    Bhuiyan, E. H.
    Presenza-Pitman, G.
    Azzouz, M.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2012, 473 : 61 - 70
  • [44] Energy gaps in Bi2Sr2CaCu2O8+δ cuprate superconductors
    J. K. Ren
    X. B. Zhu
    H. F. Yu
    Ye Tian
    H. F. Yang
    C. Z. Gu
    N. L. Wang
    Y. F. Ren
    S. P. Zhao
    Scientific Reports, 2
  • [45] The influence of synthesis conditions on Bi2Sr2CaCu2O8+δ superconductors
    Ghosh, AK
    Basu, AN
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 1998, 11 (09): : 852 - 857
  • [46] Vortex fluctuations in underdoped Bi2Sr2CaCu2O8+δ crystals
    Colson, Sylvain
    Konczykowski, Marcin
    Gaifullin, Marat B.
    Matsuda, Yuji
    Gierlowski, Piotr
    Li, Ming
    Kes, Peter H.
    Van Der Beek, Cornelis J.
    Physical Review Letters, 2003, 90 (13) : 1 - 137002
  • [47] Josephson vortices in Bi2Sr2CaCu2O8+δ single crystal
    Hirata, K
    Ooi, S
    Mochiku, T
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2002, 382 (01): : 142 - 146
  • [48] Tailoring Bi2Sr2CaCu2O8+δ surface Josephson junctions
    Wei, Zihan
    Du, Hongmei
    Li, Dingding
    Jiang, Mei Ping
    Zhang, Ping
    Chen, Shixian
    Lyu, Yang-Yang
    Sun, Hancong
    Wang, Yong-Lei
    Koelle, Dieter
    Kleiner, Reinhold
    Wang, Huabing
    Wu, Peiheng
    APPLIED PHYSICS LETTERS, 2023, 122 (11)
  • [49] Tunneling spectroscopy of various underdoped Bi2Sr2CaCu2O8+δ
    Ekino, T
    Hashimoto, S
    Fujii, H
    PHYSICA C, 2001, 357 : 130 - 133
  • [50] Nanoscale heterogeneity in the electronic structure of Bi2Sr2CaCu2O8+δ
    Davis, JC
    INTRINSIC MULTISCALE STRUCTURE AND DYNAMICS IN COMPLEX ELECTRONIC OXIDES, PROCEEDINGS, 2003, : 193 - 202