A New Principal Curve Algorithm for Nonlinear Principal Component Analysis

被引:0
|
作者
Antory, David [1 ]
Kruger, Uwe [2 ]
Littler, Tim [3 ]
机构
[1] Univ Warwick, Int Automot Res Ctr, Coventry CV4 7AL, W Midlands, England
[2] Queens Univ Belfast, Intelligent Syst & Ctrl Grp, Belfast BT7 1NN, Antrim, North Ireland
[3] Queens Univ Belfast, Energy Syst Res Grp, Belfast BT7 1NN, Antrim, North Ireland
关键词
D O I
10.1007/11816157_155
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper summarizes a new concept to determine principal curves for nonlinear principal component analysis (PCA). The concept is explained within the framework of the Hastie and Stuetzle algorithm and utilizes spline functions. The paper proposes a new algorithm and shows that it provides an efficient method to extract underlying information from measured data. The new method is geometrically simple and computationally expedient, as the number of unknown parameters increases linearly with the analyzed variable set. The utility of the algorithm is exemplified in two examples.
引用
收藏
页码:1235 / 1246
页数:12
相关论文
共 50 条
  • [21] Nonlinear principal component analysis of noisy data
    Hsieh, William W.
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 4582 - 4586
  • [22] A Nonlinear principal component analysis of image data
    Saegusa, R
    Sakano, H
    Hashimoto, S
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2005, E88D (10): : 2242 - 2248
  • [23] Nonlinear principal component analysis by neural networks
    Hsieh, WW
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2001, 53 (05) : 599 - 615
  • [24] Image compression by nonlinear principal component analysis
    Yoshioka, M
    Omatu, S
    ETFA '96 - 1996 IEEE CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION, PROCEEDINGS, VOLS 1 AND 2, 1996, : 704 - 706
  • [25] Projection techniques for nonlinear principal component analysis
    Bolton, RJ
    Hand, DJ
    Webb, AR
    STATISTICS AND COMPUTING, 2003, 13 (03) : 267 - 276
  • [26] Theory and applications of a nonlinear principal component analysis
    Saegusa, Ryo
    Hashimoto, Shuji
    Advances in Computational Methods in Sciences and Engineering 2005, Vols 4 A & 4 B, 2005, 4A-4B : 504 - 508
  • [27] Generalization of the Principal Component Analysis algorithm for interferometry
    Vargas, J.
    Sorzano, C. O. S.
    Estrada, J. C.
    Carazo, J. M.
    OPTICS COMMUNICATIONS, 2013, 286 : 130 - 134
  • [28] Principal component analysis algorithm with invariant norm
    Luo, F.-L.
    Unbehauen, R.
    Li, Y.-D.
    Neurocomputing, 1995, 8 (02):
  • [29] A PRINCIPAL COMPONENT ANALYSIS ALGORITHM WITH INVARIANT NORM
    LUO, FL
    UNBEHAUEN, R
    LI, YD
    NEUROCOMPUTING, 1995, 8 (02) : 213 - 221
  • [30] An Improved Algorithm for Kernel Principal Component Analysis
    Wenming Zheng
    Cairong Zou
    Li Zhao
    Neural Processing Letters, 2005, 22 : 49 - 56