Spatio-temporal variograms and covariance models

被引:40
|
作者
Ma, CS [1 ]
机构
[1] Wichita State Univ, Dept Math & Stat, Wichita, KS 67260 USA
关键词
covariance; intrinsically stationary; isotropic; positive definite; power-law decay; Schoenberg-Levy kernel; stationary; variogram;
D O I
10.1239/aap/1127483743
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Variograms and covariance functions are the fundamental tools for modeling dependent data observed over time, space, or space-time. This paper aims at constructing nonseparable spatio-temporal variograms and covariance models. Special attention is paid to an intrinsically stationary spatio-temporal random field whose covariance function is of Schoenberg-Levy type. The correlation structure is studied for its increment process and for its partial derivative with respect to the time lag, as well as for the superposition over time of a stationary spatio-temporal random field. As another approach, we investigate the permissibility of the linear combination of certain separable spatio-temporal covariance functions to be a valid covariance, and obtain a subclass of stationary spatio-temporal models isotropic in space.
引用
收藏
页码:706 / 725
页数:20
相关论文
共 50 条
  • [41] Additive models with spatio-temporal data
    Xiangming Fang
    Kung-Sik Chan
    [J]. Environmental and Ecological Statistics, 2015, 22 : 61 - 86
  • [42] ON SOME MATERN COVARIANCE FUNCTIONS FOR SPATIO-TEMPORAL RANDOM FIELDS
    Ip, Ryan H. L.
    Li, W. K.
    [J]. STATISTICA SINICA, 2017, 27 (02) : 805 - 822
  • [43] A spatio-temporal covariance descriptor for person re-identification
    Hadjkacem, Bassem
    Ayedi, Walid
    Abid, Mohamed
    Snoussi, Hichem
    [J]. 2015 15TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2015, : 618 - 622
  • [44] Robust Kronecker Product PCA for Spatio-Temporal Covariance Estimation
    Greenewald, Kristjan
    Hero, Alfred O., III
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (23) : 6368 - 6378
  • [45] Modeling spatio-temporal complex covariance functions for vectorial data
    Cappello, C.
    De Iaco, S.
    Maggio, S.
    Posa, D.
    [J]. SPATIAL STATISTICS, 2022, 47
  • [46] Spatio-Temporal Covariance and Cross-Covariance Functions of the Great Circle Distance on a Sphere
    Porcu, Emilio
    Bevilacqua, Moreno
    Genton, Marc G.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (514) : 888 - 898
  • [47] A Class of Convolution-Based Models for Spatio-Temporal Processes with Non-Separable Covariance Structure
    Rodrigues, Alexandre
    Diggle, Peter J.
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (04) : 553 - 567
  • [48] Editorial: Spatio-temporal data models and languages
    Spaccapietra, S
    [J]. GEOINFORMATICA, 2001, 5 (01) : 5 - 9
  • [49] Prediction for spatio-temporal models with autoregression in errors
    Wang, Hongxia
    Wang, Jinde
    Huang, Bo
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (01) : 217 - 244
  • [50] BAYESIAN MODELS FOR SPATIO-TEMPORAL ASSESSMENT OF DISEASE
    Kang, Su Yun
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 91 (03) : 516 - 518