Gene annotation bias impedes biomedical research

被引:95
|
作者
Haynes, Winston A. [1 ,2 ,3 ]
Tomczak, Aurelie [1 ,2 ]
Khatri, Purvesh [1 ,2 ]
机构
[1] Stanford Univ, Stanford Inst Immun Transplantat & Infect, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Med, Stanford Ctr Biomed Informat Res, Stanford, CA 94305 USA
[3] Stanford Univ, Biomed Informat Training Program, Stanford, CA 94305 USA
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
美国国家科学基金会;
关键词
EXPRESSION; ONTOLOGY; ASSOCIATIONS; RESOURCE; TOOL;
D O I
10.1038/s41598-018-19333-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We found tremendous inequality across gene and protein annotation resources. We observed that this bias leads biomedical researchers to focus on richly annotated genes instead of those with the strongest molecular data. We advocate that researchers reduce these biases by pursuing data-driven hypotheses.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Detecting bias in biomedical research: looking at study design and published findings is not enough
    Noble, John H.
    MONASH BIOETHICS REVIEW, 2007, 26 (1-2) : 24 - 45
  • [32] Annotation Inconsistency and Entity Bias in MultiWOZ
    Qian, Kun
    Berrami, Ahmad
    Lin, Zhouhan
    De, Ankita
    Geramifard, Alborz
    Yu, Zhou
    Sankar, Chinnadhurai
    SIGDIAL 2021: 22ND ANNUAL MEETING OF THE SPECIAL INTEREST GROUP ON DISCOURSE AND DIALOGUE (SIGDIAL 2021), 2021, : 326 - 337
  • [33] Reducing publication bias in biomedical research: reviewing and registering protocol with a suitable journal
    Rezaeian, Mohsen
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2016, 69 : 248 - 249
  • [34] Text-based over-representation analysis of microarray gene lists with annotation bias
    Leong, Hui Sun
    Kipling, David
    NUCLEIC ACIDS RESEARCH, 2009, 37 (11)
  • [35] Reply to Nuzzo and Deaner: "Investigator bias" is a potent influence on the underrepresentation of women research participants in biomedical research
    James, Jessica J.
    Klevenow, Emilie A.
    Atkinson, Mira A.
    Vosters, Emma E.
    Bueckers, Elizabeth P.
    Quinn, Meagan E.
    Kindy, Samantha L.
    Mason, Azara P.
    Nelson, Sophia K.
    Rainwater, Kennedy A. H.
    Taylor, Petra V.
    Zippel, Elena P.
    Hunter, Sandra K.
    JOURNAL OF APPLIED PHYSIOLOGY, 2024, 136 (01) : 56 - 57
  • [36] Interactive and Iterative Annotation for Biomedical Entity Recognition
    Yimam, Seid Muhie
    Biemann, Chris
    Majnaric, Ljiljana
    Sabanovic, Sefket
    Holzinger, Andreas
    BRAIN INFORMATICS AND HEALTH (BIH 2015), 2015, 9250 : 347 - 357
  • [37] Semantic annotation of biomedical literature using Google
    Saetre, R
    Tveit, A
    Steigedal, TS
    Laegreid, A
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, PT 3, 2005, 3482 : 327 - 337
  • [38] GOTA: GO term annotation of biomedical literature
    Pietro Di Lena
    Giacomo Domeniconi
    Luciano Margara
    Gianluca Moro
    BMC Bioinformatics, 16
  • [39] Biomedical Image Segmentation via Representative Annotation
    Zheng, Hao
    Yang, Lin
    Chen, Jianxu
    Han, Jun
    Zhang, Yizhe
    Liang, Peixian
    Zhao, Zhuo
    Wang, Chaoli
    Chen, Danny Z.
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 5901 - 5908
  • [40] Partial Annotation Learning for Biomedical Entity Recognition
    Ding, Liangping
    Colavizza, Giovanni
    Zhang, Zhixiong
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (02) : 1409 - 1418