Convexity of the gamma function with respect to Holder means

被引:0
|
作者
Trif, T [1 ]
机构
[1] Univ Babes Bolyai, Fac Matemat Informat, Cluj Napoca, Romania
来源
INEQUALITY THEORY AND APPLICATIONS VOL 3 | 2003年
关键词
gamma function; digamma function; multiplicatively convex function; geometrically convex function;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the gamma function is strictly multiplicatively concave on [0, x(0)] and strictly multiplicatively convex on [x(0), infinity], where x(0) is an element of [0, 1] is the unique solution of the equation psi(x) + xpsi'(x) = 0 and psi : [0, infinity] --> R is the digamma function: psi(x) = (dx)-(d) logGamma(x). Thus we answer to an open question raised by C. P. Niculescu [6, p. 164]. Likewise, we investigate the convexity of Gamma with respect to the Holder means.
引用
收藏
页码:189 / 195
页数:7
相关论文
共 50 条
  • [41] Monotonicity, convexity, and complete monotonicity of two functions related to the gamma function
    Yang, Zhen-Hang
    Tian, Jing-Feng
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3603 - 3617
  • [42] Convexity space with respect to a given set
    Blaga, L
    Lupsa, L
    GENERALIZED CONVEXITY, GENERALIZED MONOTONICITY: RECENT RESULTS, 1998, 27 : 199 - 208
  • [43] A Convexity Concept with Respect to a Pair of Functions
    Samet, Bessem
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 43 (05) : 522 - 540
  • [44] Monotonicity, convexity, and complete monotonicity of two functions related to the gamma function
    Zhen-Hang Yang
    Jing-Feng Tian
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3603 - 3617
  • [45] Bochner-Riesz means with respect to a rough distance function
    Taylor, Paul
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (04) : 1403 - 1432
  • [46] Means Refinements Via Convexity
    Sababheh, M.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (03)
  • [47] CONVEXITY OF NORLUND AND PROGRESSIVE MEANS
    ALI, ZS
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (06): : A695 - &
  • [48] LOGARITHMIC CONVEXITY OF GINI MEANS
    Zhao, Jiao-Lian
    Luo, Qiu-Ming
    Guo, Bai-Ni
    Qi, Feng
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (04): : 509 - 516
  • [49] Convexity for area integral means
    Hu, Qinxia
    Wang, Chunjie
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (02)
  • [50] Means Refinements Via Convexity
    M. Sababheh
    Mediterranean Journal of Mathematics, 2017, 14