Optical characterization of vapor Zn-diffused waveguides in lithium niobate

被引:27
|
作者
Schiller, F
Herreros, B
Lifante, G
机构
[1] Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid, 28049, C-IV
关键词
D O I
10.1364/JOSAA.14.000425
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical waveguides in LiNbO3 crystals produced by Zn diffusion from the vapor phase have been characterized. Dark mode measurements have been used to determine the refractive-index profiles of the planar waveguides. The influence of the diffusion temperature and diffusion time on the waveguide depth and on the ordinary and extraordinary index changes has been investigated. The effect of the buffer pressure on the waveguide parameters has also been studied. Waveguide formation has been observed at temperatures as low as 550 degrees C, far from the Curie point and the Li out-diffusion temperature. Changes in refractive index higher than 2.5% have been obtained. The activation energy for the process was similar to that for diffusion of Zn from a ZnO source at a higher temperature. The results of the optical characterization are compared with those for the conventional Ti diffusion method, and some aspects of the diffusion process are discussed. (C) 1997 Optical Society of America [S0740-3232(97)01102-2]
引用
收藏
页码:425 / 429
页数:5
相关论文
共 50 条
  • [31] Characterization of the poling process in zinc diffused lithium tantalate optical waveguides
    Suzuki, T.
    Eknoyan, O.
    Ferroelectrics, 1993, 145 (1-4) : 119 - 123
  • [32] EFFICIENT PRISM-COUPLING INTO TITANIUM DIFFUSED LITHIUM-NIOBATE OPTICAL-WAVEGUIDES
    SOHLER, W
    SUCHE, H
    WAVE ELECTRONICS, 1979, 3 (04): : 269 - 275
  • [33] Micro-Raman characterization of Zn-diffused channel waveguides in Tm3+:LiNbO3
    Quintanilla, Marta
    Martin Rodriguez, Emma
    Cantelar, Eugenio
    Cusso, Fernando
    Domingo, Concepcion
    OPTICS EXPRESS, 2010, 18 (06): : 5449 - 5458
  • [34] Quasi-phasematched wavelength conversion in Zn-diffused LiNbO3 waveguides
    Fujimura, M
    Ishizuki, H
    Suhara, T
    Nishihara, H
    CLEO(R)/PACIFIC RIM 2001, VOL I, TECHNICAL DIGEST, 2001, : 96 - 97
  • [35] Tm3+-doped Zn-diffused LiNbO3 channel waveguides
    Cantelar, E
    Torchia, GA
    Sanz-García, JA
    Pernas, PL
    Lifante, G
    Cussó, F
    PHYSICA SCRIPTA, 2005, T118 : 69 - 71
  • [36] PHOTOLUMINESCENCE OF ZN-DIFFUSED AND ANNEALED INP
    MONTIE, EA
    VANGURP, GJ
    JOURNAL OF APPLIED PHYSICS, 1989, 66 (11) : 5549 - 5553
  • [37] Photorefractive damage resistant Zn-diffused optical waveguides in LiNbO3:Nd3+ and laser operation
    Di Paolo, RE
    Cantelar, E
    Nevado, R
    García, JAS
    Domenech, M
    Pernas, PL
    Lifante, G
    Cussó, F
    FERROELECTRICS, 2002, 273 : 2607 - 2612
  • [38] Polarization separation in titanium-diffused waveguides on lithium niobate substrates
    Karavaev, P. M.
    Il'ichev, I. V.
    Agruzov, P. M.
    Tronev, A. V.
    Shamray, A. V.
    TECHNICAL PHYSICS LETTERS, 2016, 42 (05) : 513 - 516
  • [39] Integration of chalcogenide and titanium-diffused lithium-niobate waveguides
    Solmaz, Mehmet E.
    Madsen, Christi K.
    LASER RESONATORS AND BEAM CONTROL XII, 2010, 7579
  • [40] Integrated superconducting detectors on titanium in-diffused lithium niobate waveguides
    Hoepker, Jan Philipp
    Verma, Varun B.
    Gerrits, Thomas
    Lita, Adriana E.
    Ricken, Raimund
    Quiring, Viktor
    Mirin, Richard P.
    Nam, Sae Woo
    Silberhorn, Christine
    Bartley, Tim J.
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,