Sentiment Analysis of Animated Film Reviews Using Intelligent Machine Learning

被引:0
|
作者
Chen, Cheng [1 ]
Xu, Bin [1 ]
Yang, Jong-Hoon [1 ]
Liu, Mi [1 ]
机构
[1] Sangmyung Univ, Dept Digital Image, Seoul 03015, South Korea
关键词
D O I
10.1155/2022/8517205
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Film is an essential expression of a country's cultural soft power in terms of cross-cultural exchange. In addition, film is also the most direct and favourable means of communication. Along with the expansion and development of the Chinese film market, outstanding animation films have emerged in recent years. Animated films have both artistic and commercial properties and can not only have a cultural impact but can also contribute to economic growth. For this reason, our country is now paying more and more attention to the development of animated films. Specifically, animated films not only represent a country's cultural soft power and national image, but they are also a symbol of the strength of a country's cultural industry. As a reflection and extension of China's culture and ideology, animated films play an important role in enhancing cultural confidence and cultural export. In recent years, China's economy has shown a steady and sustained growth trend. At the same time, with the rapid development of internet technology, social networking has gradually penetrated into all aspects of people's lives. Various social networking forums, websites, and sites have emerged. While satisfying a wide range of needs, they also provide information on product reviews, social reviews, and service reviews. These reviews contain feedback from the reviewer about the subject of the review. Tapping into the emotions in these reviews can provide consumers with shopping references and help businesses to optimise their products and improve their business strategies. With the help of modern internet technology and information technology, the modern movie industry, such as Cat's Eye Movies and other internet entertainment service platforms, has developed a model of online ticketing, offline movie viewing, and online reviews and feedback. The content of the reviews on these movie websites fully reflects the attitudinal views of the movie-going community. These reviews play a decisive role in the box office and the further spread of culture. As a result, in order to better understand the audience's emotional tendencies and needs, it is necessary to carry out sentiment analysis and deep semantic mining of animated film reviews. As the evaluation of film works considers many factors and is complex and variable, the choice of model is crucial in the process of sentiment analysis. Machine learning models represented by deep neural networks are more tolerant of sentence noise and have strong information discrimination and feature self-learning capabilities. As a result, intelligent machine learning is more advantageous for sentiment classification tasks. This study is a combination of textual data mining and statistical analysis from the perspective of viewers' comments to study the online reviews of animation films from different countries. At the same time, this research hopes to uncover meaningful information from the film reviews and the gap between Chinese and other countries' animation films, in order to provide a little help for the rise of domestic animation films.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Classification of Sentiment Reviews for Indian Railways Using Machine Learning Methods
    Bagga, Manju
    Aggarwa, Ritu
    Arora, Nitika
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 1, 2023, 473 : 171 - 177
  • [32] Sentiment Analysis of Amazon Product Reviews by Supervised Machine Learning Models
    bin Harunasir, Mohamad Faris
    Palanichamy, Naveen
    Haw, Su-Cheng
    Ng, Kok-Why
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2023, 14 (04) : 857 - 862
  • [33] Sentiment Analysis and Fake Amazon Reviews Classification Using SVM Supervised Machine Learning Model
    Tabany, Myasar
    Gueffal, Meriem
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2024, 15 (01) : 49 - 58
  • [34] Sentiment Analysis for Women's E-commerce Reviews using Machine Learning Algorithms
    Noor, Alaa
    Islam, Mohrima
    2019 10TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2019,
  • [35] Context-based sentiment analysis on customer reviews using machine learning linear models
    Chinnalagu A.
    Durairaj A.K.
    PeerJ Computer Science, 2021, 7
  • [36] Detection of Sarcasm on Amazon Product Reviews using Machine Learning Algorithms under Sentiment Analysis
    Rao, Mandala Vishal
    Sindhu, C.
    2021 SIXTH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2021, : 196 - 199
  • [37] Sentiment Analysis of Bengali Online Reviews written with English Letter Using Machine Learning Approaches
    Emon, Md. Ismail Siddiqi
    Ahmed, Sabiha Sunjida
    Milu, Sharmin Akter
    Mahtab, S. S.
    2019 6TH INTERNATIONAL CONFERENCE ON NETWORKING, SYSTEMS AND SECURITY (NSYSS 2019), 2019, : 109 - 115
  • [38] Context-based sentiment analysis on customer reviews using machine learning linear models
    Chinnalagu, Anandan
    Durairaj, Ashok Kumar
    PEERJ COMPUTER SCIENCE, 2021, 7
  • [39] Sentiment Analysis in Customer Reviews for Product Recommendation in E-commerce Using Machine Learning
    Panduro-Ramirez, Jeidy
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [40] A systematic literature review on machine learning applications for consumer sentiment analysis using online reviews
    Jain, Praphula Kumar
    Pamula, Rajendra
    Srivastava, Gautam
    COMPUTER SCIENCE REVIEW, 2021, 41 (41)