The Effect of Terrestrial Surface Slope and Roughness on Laser Footprint Geolocation Error for Spaceborne Laser Altimeter

被引:5
|
作者
Zhou Hui [1 ]
Chen Yuwei [2 ,3 ]
Ma Yue [1 ]
Li Song [1 ]
Juha, Hyyppa [2 ]
Pei Ling [4 ]
机构
[1] Wuhan Univ, Geospatial Informat Collaborat Innovat Ctr, Elect Informat Sch, Luojia Hill, Wuhan 430072, Hubei, Peoples R China
[2] Finnish Geospatial Res Inst, Dept Remote Sensing & Photogrammetry, Geodeetinrinne 2, Kyrkslatt 02431, Uusimaa Provinc, Finland
[3] Chinese Acad Sci, Key Lab Quantitat Remote Sensing Informat Technol, Beijing 100094, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai Key Lab Nav & Locat Based Serv, Shanghai 200240, Peoples R China
来源
基金
中国国家自然科学基金; 芬兰科学院;
关键词
PERFORMANCE; CALIBRATION; TOPOGRAPHY; ICESAT;
D O I
10.14358/PERS.84.10.647
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The quality of spaceborne laser altimeter observation mainly depends on the geolocation accuracy of laser footprint. To thoroughly analyze the footprint geolocation errors, mathematical models of Root-Mean-Square Error (RMSE) of laser footprint geolocation are established based on footprint geolocation procedure and principle of error propagation. Taking Geoscience Laser Altimeter System (GLAS) as an example, the influences of surface slope and roughness on the RMSE of laser footprint geolocation (LFG) are simulated. The simulation results for nine representative terrains indicate that the horizontal errors are constant of 5.86 meters that mainly caused by instrument mounting errors, laser pointing errors, and platform attitude errors; while the vertical error increases from 0.07 m to 2.49 m, which is primarily contributed by the laser pointing error. To validate the proposed mathematical model, 20 reference LFG differences are computed by the differences of original geolocation of GLAS and refined footprint geolocation based on a waveform matching method with coincident airborne Light Detection and Ranging (lidar) data. The validated results prove that the RMSE models of laser footprint geolocation are applicable in evaluating performance and sensor error allocations of spaceborne laser altimeter.
引用
收藏
页码:647 / 656
页数:10
相关论文
共 50 条
  • [21] Modeling and Correcting Building Boundary in ICESat-2 Spaceborne Laser Altimeter Data Considering the Extended Laser Spot Effect
    Zhao, Pufan
    Zhang, Biyi
    Liu, Qi
    Liu, Xinyuan
    Yang, Jian
    Li, Song
    Ma, Yue
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 11
  • [22] Analysis of sea ice thickness and mass estimation with a spaceborne laser altimeter
    Luntama, JP
    Koponen, S
    Hallikainen, M
    IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT, 1997, : 1314 - 1316
  • [23] Waveform Simulation of Spaceborne Laser Altimeter Echo Based on Fine Terrain
    Liu Ren
    Xie Jun-feng
    Mo Fan
    Xia Xue-fei
    ACTA PHOTONICA SINICA, 2018, 47 (11)
  • [24] Vertical roughness of Mars from the Mars Orbiter Laser Altimeter
    Garvin, James B.
    Frawley, James J.
    Abshire, James B.
    Geophysical Research Letters, 26 (03): : 381 - 384
  • [25] On the estimation of geological surface roughness from terrestrial laser scanner point clouds
    Mills, Graham
    Fotopoulos, Georgia
    GEOSPHERE, 2013, 9 (05): : 1410 - 1416
  • [26] Influence of noise on range error for satellite laser altimeter
    Zhou, Hui
    Li, Song
    Wang, Liangxun
    Zheng, Guoxing
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2015, 44 (08): : 2256 - 2261
  • [27] Vertical roughness of Mars from the Mars Orbiter Laser Altimeter
    Garvin, JB
    Frawley, JJ
    Abshire, JB
    GEOPHYSICAL RESEARCH LETTERS, 1999, 26 (03) : 381 - 384
  • [28] OVERVIEW OF THE TERRESTRIAL ECOSYSTEM CARBON MONITORING SATELLITE LASER ALTIMETER
    Li, Guoyuan
    Gao, Xianlian
    Hu, Fen
    Guo, Aiyan
    Liu, Zhao
    Chen, Jiyi
    Liu, Cangru
    Nie, Sheng
    Fu, Anming
    XXIV ISPRS CONGRESS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION I, 2022, 43-B1 : 53 - 58
  • [29] Terrestrial laser scanning of rock slope instabilities
    Abellan, Antonio
    Oppikofer, Thierry
    Jaboyedoff, Michel
    Rosser, Nicholas J.
    Lim, Michael
    Lato, Matthew J.
    EARTH SURFACE PROCESSES AND LANDFORMS, 2014, 39 (01) : 80 - 97
  • [30] Surface slope and roughness measurement using ICESat/GLAS elevation and laser waveform
    Li, Xiaolu
    Xu, Kai
    Xu, Lijun
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2016, 27 (09)