The Effect of Terrestrial Surface Slope and Roughness on Laser Footprint Geolocation Error for Spaceborne Laser Altimeter

被引:5
|
作者
Zhou Hui [1 ]
Chen Yuwei [2 ,3 ]
Ma Yue [1 ]
Li Song [1 ]
Juha, Hyyppa [2 ]
Pei Ling [4 ]
机构
[1] Wuhan Univ, Geospatial Informat Collaborat Innovat Ctr, Elect Informat Sch, Luojia Hill, Wuhan 430072, Hubei, Peoples R China
[2] Finnish Geospatial Res Inst, Dept Remote Sensing & Photogrammetry, Geodeetinrinne 2, Kyrkslatt 02431, Uusimaa Provinc, Finland
[3] Chinese Acad Sci, Key Lab Quantitat Remote Sensing Informat Technol, Beijing 100094, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai Key Lab Nav & Locat Based Serv, Shanghai 200240, Peoples R China
来源
基金
中国国家自然科学基金; 芬兰科学院;
关键词
PERFORMANCE; CALIBRATION; TOPOGRAPHY; ICESAT;
D O I
10.14358/PERS.84.10.647
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The quality of spaceborne laser altimeter observation mainly depends on the geolocation accuracy of laser footprint. To thoroughly analyze the footprint geolocation errors, mathematical models of Root-Mean-Square Error (RMSE) of laser footprint geolocation are established based on footprint geolocation procedure and principle of error propagation. Taking Geoscience Laser Altimeter System (GLAS) as an example, the influences of surface slope and roughness on the RMSE of laser footprint geolocation (LFG) are simulated. The simulation results for nine representative terrains indicate that the horizontal errors are constant of 5.86 meters that mainly caused by instrument mounting errors, laser pointing errors, and platform attitude errors; while the vertical error increases from 0.07 m to 2.49 m, which is primarily contributed by the laser pointing error. To validate the proposed mathematical model, 20 reference LFG differences are computed by the differences of original geolocation of GLAS and refined footprint geolocation based on a waveform matching method with coincident airborne Light Detection and Ranging (lidar) data. The validated results prove that the RMSE models of laser footprint geolocation are applicable in evaluating performance and sensor error allocations of spaceborne laser altimeter.
引用
收藏
页码:647 / 656
页数:10
相关论文
共 50 条
  • [1] Improvements In Spaceborne Laser Altimeter Data Geolocation
    S.B. Luthcke
    C.C. Carabajal
    D.D. Rowlands
    D.E. Pavlis
    Surveys in Geophysics, 2001, 22 : 549 - 559
  • [2] Improvements in spaceborne laser altimeter data geolocation
    Luthcke, SB
    Carabajal, CC
    Rowlands, DD
    Pavlis, DE
    SURVEYS IN GEOPHYSICS, 2001, 22 (5-6) : 549 - 559
  • [3] A Crossover Evaluation and Calibration Method for Geolocation Error of Spaceborne Photon-Counting Laser Altimeter
    Wang, Tao
    Fang, Yong
    Zhang, Shuangcheng
    Cao, Bincai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [4] ZY3-02 Laser Altimeter Footprint Geolocation Prediction
    Xie, Junfeng
    Tang, Xinming
    Mo, Fan
    Li, Guoyuan
    Zhu, Guangbin
    Wang, Zhenming
    Fu, Xingke
    Gao, Xiaoming
    Dou, Xianhui
    SENSORS, 2017, 17 (10)
  • [5] Geolocation for the ICESat laser altimeter
    Schutz, Bob E.
    Adv Astronaut Sci, SUPPL. (123-139):
  • [6] Geolocation for the ICESat laser altimeter
    Schutz, BE
    GUIDANCE AND CONTROL 2005, 2005, 121 : 127 - 142
  • [7] Enhanced geolocation of spaceborne laser altimeter surface returns: parameter calibration from the simultaneous reduction of altimeter range and navigation tracking data
    Luthcke, SB
    Carabajal, CC
    Rowlands, DD
    JOURNAL OF GEODYNAMICS, 2002, 34 (3-4) : 447 - 475
  • [8] Airborne/spaceborne laser altimeter
    Ishizu, Mitsuo
    Journal of the Communications Research Laboratory, 2002, 49 (02): : 89 - 107
  • [9] Mars Orbiter Laser Altimeter pulse width measurements and footprint-scale roughness
    Neumann, GA
    Abshire, JB
    Aharonson, O
    Garvin, JB
    Sun, X
    Zuber, MT
    GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (11)
  • [10] Research and development of spaceborne solid state laser technology for laser altimeter
    星载激光测高仪固体激光器技术研究与发展
    1600, Chinese Society of Astronautics (49):