Discovering sequence motifs with arbitrary insertions and deletions

被引:246
|
作者
Frith, Martin C. [1 ]
Saunders, Neil F. W. [2 ]
Kobe, Bostjan [2 ,3 ]
Bailey, Timothy L. [3 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Computat Biol Res Ctr, Tokyo, Japan
[2] Univ Queensland, Sch Mol & Microbial Sci, Brisbane, Qld, Australia
[3] Univ Queensland, Inst Mol Biosci, Brisbane, Qld, Australia
关键词
D O I
10.1371/journal.pcbi.1000071
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Biology is encoded in molecular sequences: deciphering this encoding remains a grand scientific challenge. Functional regions of DNA, RNA, and protein sequences often exhibit characteristic but subtle motifs; thus, computational discovery of motifs in sequences is a fundamental and much-studied problem. However, most current algorithms do not allow for insertions or deletions (indels) within motifs, and the few that do have other limitations. We present a method, GLAM2 (Gapped Local Alignment of Motifs), for discovering motifs allowing indels in a fully general manner, and a companion method GLAM2SCAN for searching sequence databases using such motifs. GLAM2 is a generalization of the gapless Gibbs sampling algorithm. It re-discovers variable-width protein motifs from the PROSITE database significantly more accurately than the alternative methods PRATT and SAM-T2K. Furthermore, it usefully refines protein motifs from the ELM database: in some cases, the refined motifs make orders of magnitude fewer overpredictions than the original ELM regular expressions. GLAM2 performs respectably on the BAliBASE multiple alignment benchmark, and may be superior to leading multiple alignment methods for "motif-like'' alignments with N- and C-terminal extensions. Finally, we demonstrate the use of GLAM2 to discover protein kinase substrate motifs and a gapped DNA motif for the LIM-only transcriptional regulatory complex: using GLAM2SCAN, we identify promising targets for the latter. GLAM2 is especially promising for short protein motifs, and it should improve our ability to identify the protein cleavage sites, interaction sites, post-translational modification attachment sites, etc., that underlie much of biology. It may be equally useful for arbitrarily gapped motifs in DNA and RNA, although fewer examples of such motifs are known at present. GLAM2 is public domain software, available for download at http://bioinformatics.org.au/glam2.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [21] List Decoding of Insertions and Deletions
    Wachter-Zeh, Antonia
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (09) : 6297 - 6304
  • [22] On the List Decodability of Insertions and Deletions
    Hayashi, Tomohiro
    Yasunaga, Kenji
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 86 - 90
  • [23] Contextual insertions/deletions and computability
    Kari, L
    Thierrin, G
    INFORMATION AND COMPUTATION, 1996, 131 (01) : 47 - 61
  • [24] On the List Decodability of Insertions and Deletions
    Hayashi, Tomohiro
    Yasunaga, Kenji
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (09) : 5335 - 5343
  • [25] Covering Codes for Insertions and Deletions
    Lenz, Andreas
    Rashtchian, Cyrus
    Siegel, Paul H.
    Yaakobi, Eitan
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 723 - 728
  • [26] Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data
    Batley, J
    Barker, G
    O'Sullivan, H
    Edwards, KJ
    Edwards, D
    PLANT PHYSIOLOGY, 2003, 132 (01) : 84 - 91
  • [27] Chromosomal insertions and deletions in Streptococcus mutans
    Robinson, WG
    Old, LA
    Shah, DSH
    Russell, RRB
    CARIES RESEARCH, 2003, 37 (02) : 148 - 156
  • [28] Probabilistic Phylogenetic Inference with Insertions and Deletions
    Rivas, Elena
    Eddy, Sean R.
    PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (09)
  • [29] Perfect Sorting by Reversals and Deletions/Insertions
    Chen, Hong-Yu
    Tan, Xiang
    Li, Guo-Jun
    OPERATIONS RESEARCH AND ITS APPLICATIONS, 2010, 12 : 512 - 518
  • [30] Codes Correcting a Burst of Deletions or Insertions
    Schoeny, Clayton
    Wachter-Zeh, Antonia
    Gabrys, Ryan
    Yaakobi, Eitan
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 630 - 634