Advection versus diffusion in Richtmyer-Meshkov mixing

被引:1
|
作者
Doss, Forrest W. [1 ]
机构
[1] Los Alamos Natl Lab, Theoret Design Div, Los Alamos, NM 87545 USA
关键词
Richtmyer-Meskov instability; Reynolds-averaged turbulence models; Telegraph equation; DAMPED WAVE-EQUATION; RAYLEIGH-TAYLOR; INSTABILITY; TURBULENCE; MODEL; ACCELERATION; SPACE; DECAY;
D O I
10.1016/j.physleta.2022.127976
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Richtmyer-Meshkov (RM) instability is one of the most severe degradation mechanisms for inertial confinement fusion (ICF), and mitigating it has been a priority for the global ICF effort. In this Letter, the instability's ability to atomically mix is linked to its background decay of residual turbulent energy. We show how recently derived inequalities from the mathematical theory of PDEs constrain the evolution. A model RM process at leading order may diffusively mix or retain imprints of its initial structures indefinitely, depending on initial conditions, and there exists a theoretical range of zero-mixing for certain values of parameters. The results may apply to other systems resembling scalar transport in decaying turbulence.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] The influence of initial conditions on turbulent mixing due to Richtmyer-Meshkov instability
    Thornber, B.
    Drikakis, D.
    Youngs, D. L.
    Williams, R. J. R.
    JOURNAL OF FLUID MECHANICS, 2010, 654 : 99 - 139
  • [32] Development of the Richtmyer-Meshkov instability upon interaction of a diffusion mixing layer of two gases with shock waves
    Ruev G.A.
    Fedorov A.V.
    Fomin V.M.
    Journal of Applied Mechanics and Technical Physics, 2005, 46 (3) : 307 - 314
  • [33] Richtmyer-Meshkov experiments on the Omega laser
    Hueckstaedt, RM
    Batha, SH
    Balkey, MM
    Delamater, ND
    Fincke, JR
    Holmes, RL
    Lanier, NE
    Magelssen, GR
    Scott, JM
    Taccetti, JM
    Horsfield, CJ
    Parker, KW
    Rothman, SD
    ASTROPHYSICS AND SPACE SCIENCE, 2005, 298 (1-2) : 255 - 259
  • [34] Richtmyer-Meshkov Experiments on the Omega Laser
    R. M. Hueckstaedt
    S. H. Batha
    M. M. Balkey
    N. D. Delamater
    J. R. Fincke
    R. L. Holmes
    N. E. Lanier
    G. R. Magelssen
    J. M. Scott
    J. M. Taccetti
    C. J. Horsfield
    K. W. Parker
    S. D. Rothman
    Astrophysics and Space Science, 2005, 298 : 255 - 259
  • [35] Richtmyer-Meshkov instability of arbitrary shapes
    Mikaelian, KO
    PHYSICS OF FLUIDS, 2005, 17 (03) : 034101 - 1
  • [36] On the problem of the Richtmyer-Meshkov instability suppression
    Aleshin, AN
    Lazareva, EV
    Sergeev, SV
    Zaitsev, SG
    DOKLADY AKADEMII NAUK, 1998, 363 (02) : 178 - 180
  • [37] RICHTMYER-MESHKOV INSTABILITY IN THE TURBULENT REGIME
    DIMONTE, G
    FRERKING, CE
    SCHNEIDER, M
    PHYSICAL REVIEW LETTERS, 1995, 74 (24) : 4855 - 4858
  • [38] QUANTITATIVE THEORY OF RICHTMYER-MESHKOV INSTABILITY
    GROVE, JW
    HOLMES, R
    SHARP, DH
    YANG, Y
    ZHANG, Q
    PHYSICAL REVIEW LETTERS, 1993, 71 (21) : 3473 - 3476
  • [39] Theory of the ablative Richtmyer-Meshkov instability
    Goncharov, VN
    PHYSICAL REVIEW LETTERS, 1999, 82 (10) : 2091 - 2094
  • [40] Extended model for Richtmyer-Meshkov mix
    Mikaelian, Karnig O.
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (11) : 935 - 942