Differential linkages between soil respiration components and microbial community structures under long-term forest conversion

被引:0
|
作者
Zhao, Rudong [1 ]
He, Mei [2 ]
Liu, Feng [1 ]
机构
[1] Chinese Acad Sci, Key Lab Aquat Bot & Watershed Ecol, Wuhan Bot Garden, Wuhan 43007, Peoples R China
[2] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China
基金
中国国家自然科学基金;
关键词
Land-use change; Carbon cycling; PLFA; Heterotrophic respiration; Autotrophic respiration; Forest ecosystem; LAND-USE CHANGE; CARBON; ROOT; SEQUESTRATION; AVAILABILITY; PLANTATIONS; RHIZOSPHERE; RESPONSES; BACTERIAL; ECOSYSTEM;
D O I
10.1007/s11368-022-03160-9
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Purpose Soil respiration (Rs) can be significantly impacted by land-use change (LUC). This study aimed to determine the response of Rs components (i.e., heterotrophic respiration (Rh) and autotrophic respiration (Ra)) to long-term forest conversion and explore their associations with soil microbial community (SMC) structures. Materials and methods Three plantations converted from natural forest 36 years ago were investigated: Cryptomeria fortune (CF), Cunninghamia lanceolata (CL), and Metasequoia glyptostroboides (MG), with the control of an adjacent natural forest (NF). In each forest site, Rh and Ra were measured using the root trenching method during the growing season. SMC structures in trenched and rhizosphere soils (0-10 cm depth) were analyzed. Results We observed an evident differentiation between SMC structures in trenched and rhizosphere soils across forest types. SMC structural dynamic in trenched soil was primarily driven by the ratio of dissolved organic carbon (c) to dissolved organic nitrogen (DON) and bulk density, whereas that in rhizosphere soil was primarily driven by DON and pH. During the growing season, both Rh and Ra were greater in MG than in NF, but they showed non-significant differences among NF, CF, and CL. The Rh pattern was primarily modified by the SMC structure (e.g., arbuscular mycorrhizal fungi (AMF)) and soil temperature, whereas the Ra pattern was primarily modified by the SMC structure in rhizosphere soil (e.g., gram-positive bacteria (GP)) in addition to fine root quality and soil temperature. Conclusions Rh and Ra patterns were jointly modified by SMC structure and microenvironment over long-term forest conversion, emphasizing the underlying roles of plant community attributes and forest management in soil C emission into the atmosphere.
引用
收藏
页码:1252 / 1262
页数:11
相关论文
共 50 条
  • [21] Long-term herbicide residues affect soil multifunctionality and the soil microbial community
    Wang, Hongzhe
    Ren, Wenjie
    Xu, Yongfeng
    Wang, Xia
    Ma, Jun
    Sun, Yi
    Hu, Wenbo
    Chen, Sensen
    Dai, Shixiang
    Song, Jiayin
    Jia, Junfeng
    Teng, Ying
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2024, 283
  • [22] Long-term forest soil warming alters microbial communities in temperate forest soils
    DeAngelis, Kristen M.
    Pold, Grace
    Topcuoglu, Beguem D.
    van Diepen, Linda T. A.
    Varney, Rebecca M.
    Blanchard, Jeffrey L.
    Melillo, Jerry
    Frey, Serita D.
    FRONTIERS IN MICROBIOLOGY, 2015, 6
  • [23] Effects of Long-Term Nitrogen Application on Soil Respiration and Its Components in Warm-Temperate Forest of Pinus tabulaeformis
    Yang L.
    Wang J.
    Zhao B.
    Zhao X.
    Linye Kexue/Scientia Silvae Sinicae, 2021, 57 (01): : 1 - 11
  • [24] Drought legacies on soil respiration and microbial community in a Mediterranean forest soil under different soil moisture and carbon inputs
    Liu, Lei
    Estiarte, Marc
    Bengtson, Per
    Li, Jian
    Asensio, Dolores
    Wallander, Häkan
    Peñuelas, Josep
    Geoderma, 2022, 405
  • [25] Drought legacies on soil respiration and microbial community in a Mediterranean forest soil under different soil moisture and carbon inputs
    Liu, Lei
    Estiarte, Marc
    Bengtson, Per
    Li, Jian
    Asensio, Dolores
    Wallander, Hakan
    Penuelas, Josep
    GEODERMA, 2022, 405
  • [26] Soil microbial biomass and bacterial and fungal community structures responses to long-term fertilization in paddy soils
    Hongzhao Yuan
    Tida Ge
    Ping Zhou
    Shoulong Liu
    Paula Roberts
    Hanhua Zhu
    Ziying Zou
    Chengli Tong
    Jinshui Wu
    Journal of Soils and Sediments, 2013, 13 : 877 - 886
  • [27] Soil microbial biomass and bacterial and fungal community structures responses to long-term fertilization in paddy soils
    Yuan, Hongzhao
    Ge, Tida
    Zhou, Ping
    Liu, Shoulong
    Roberts, Paula
    Zhu, Hanhua
    Zou, Ziying
    Tong, Chengli
    Wu, Jinshui
    JOURNAL OF SOILS AND SEDIMENTS, 2013, 13 (05) : 877 - 886
  • [28] Structure and function of the soil microbial community in a long-term fertilizer experiment
    Marschner, P
    Kandeler, E
    Marschner, B
    SOIL BIOLOGY & BIOCHEMISTRY, 2003, 35 (03): : 453 - 461
  • [29] Impact of Long-Term Diesel Contamination on Soil Microbial Community Structure
    Sutton, Nora B.
    Maphosa, Farai
    Morillo, Jose A.
    Abu Al-Soud, Waleed
    Langenhoff, Alette A. M.
    Grotenhuis, Tim
    Rijnaarts, Huub H. M.
    Smidt, Hauke
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (02) : 619 - 630
  • [30] Long-term reactive nitrogen loading alters soil carbon and microbial community properties in a subalpine forest ecosystem
    Boot, Claudia M.
    Hall, Ed K.
    Denef, Karolien
    Baron, Jill S.
    SOIL BIOLOGY & BIOCHEMISTRY, 2016, 92 : 211 - 220