Integration of Diverse Data Sources for Prediction of Adverse Drug Events

被引:6
|
作者
Abernethy, D. R. [1 ]
Bai, J. P. F. [1 ]
Burkhart, K. [1 ]
Xie, H-G [1 ]
Zhichkin, P. [1 ]
机构
[1] US FDA, Off Clin Pharmacol, Off Translat Sci, Ctr Drug Evaluat & Res, Silver Spring, MD USA
关键词
PHARMACOLOGY;
D O I
10.1038/clpt.2011.171
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The rapid evolution of large biological, pharmacological, and chemical databases has led to optimism that such data resources can be leveraged for prediction of drug action based on molecular descriptors of the drug. Challenges to realize this possibility include organization of each type of database in a manner that allows extraction of information across disparate data sources and the linkage of information across the biological, pharmacological, and chemical domains.
引用
收藏
页码:645 / 646
页数:2
相关论文
共 50 条
  • [21] Computerized data mining for adverse drug events in an outpatient setting
    Honigman, B
    Bates, DW
    Light, P
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 1998, : 1018 - 1018
  • [22] Evaluation of the Value of Web Data for Detecting Drug Adverse Events
    Duh, Mei S.
    Cremieux, Pierre
    Van Audenrode, Marc
    Vekeman, Francis
    Karner, Paul
    Giguere-Duval, Philippe
    Xiao, Yongling
    Damron, Joe
    Greenberg, Paul
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2014, 23 : 235 - 236
  • [23] Use of Hospital Data to Estimate Burden of Adverse Drug Events
    Lillie, M.
    Sharma, L.
    DRUG SAFETY, 2017, 40 (10) : 1020 - 1021
  • [24] Adverse Drug Events Link to Severity of the Event Data Needed
    Ibinson, James W.
    Buffington, Charles W.
    ANESTHESIOLOGY, 2016, 125 (02) : 431 - 431
  • [25] Detection of Adverse Drug Events through Data Mining Techniques
    Tripathy, Amiya Kumar
    Joshi, Nilakshi
    Kale, Harshal
    Durando, Mario
    Carvalho, Loyal
    2015 INTERNATIONAL CONFERENCE ON TECHNOLOGY FOR SUSTAINABLE DEVELOPMENT (ICTSD-2015), 2015,
  • [26] Using computerized data to identify adverse drug events in outpatients
    Honigman, B
    Lee, J
    Rothschild, J
    Light, P
    Pulling, RM
    Yu, T
    Bates, DW
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2001, 8 (03) : 254 - 266
  • [27] Data Mining to Generate Adverse Drug Events Detection Rules
    Chazard, Emmanuel
    Ficheur, Gregoire
    Bernonville, Stephanie
    Luyckx, Michel
    Beuscart, Regis
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2011, 15 (06): : 823 - 830
  • [28] Data-Mining-Based Detection of Adverse Drug Events
    Chazard, Emmanuel
    Preda, Cristian
    Merlin, Beatrice
    Ficheur, Gregoire
    Beuscart, Regis
    MEDICAL INFORMATICS IN A UNITED AND HEALTHY EUROPE, 2009, 150 : 552 - 556
  • [29] MultiGML: Multimodal graph machine learning for prediction of adverse drug events
    Krix, Sophia
    Delong, Lauren Nicole
    Madan, Sumit
    Domingo-Fernandez, Daniel
    Ahmad, Ashar
    Gul, Sheraz
    Zaliani, Andrea
    Froehlich, Holger
    HELIYON, 2023, 9 (09)
  • [30] Validation of a Prediction Rule for Adverse Cardiovascular Events from Drug Overdose
    Manini, A. F.
    Brent, J.
    Campleman, S.
    Judge, B. S.
    Kao, L.
    Loo, G.
    Pizon, A. F.
    Ruha, A.
    Wiegand, T.
    Wax, P.
    ANNALS OF EMERGENCY MEDICINE, 2020, 76 (04) : S6 - S6