Knowledge Association with Hyperbolic Knowledge Graph Embeddings

被引:0
|
作者
Sun, Zequn [1 ]
Chen, Muhao [2 ,3 ]
Hu, Wei [1 ]
Wang, Chengming [1 ]
Dai, Jian [4 ]
Zhang, Wei [4 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Peoples R China
[2] Univ Penn, Dept Comp & Informat Sci, Philadelphia, PA USA
[3] Univ Southern Calif, Informat Sci Inst, Los Angeles, CA USA
[4] Alibaba Grp, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
ENTITY ALIGNMENT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Capturing associations for knowledge graphs (KGs) through entity alignment, entity type inference and other related tasks benefits NLP applications with comprehensive knowledge representations. Recent related methods built on Euclidean embeddings are challenged by the hierarchical structures and different scales of KGs. They also depend on high embedding dimensions to realize enough expressiveness. Differently, we explore with low-dimensional hyperbolic embeddings for knowledge association. We propose a hyperbolic relational graph neural network for KG embedding and capture knowledge associations with a hyperbolic transformation. Extensive experiments on entity alignment and type inference demonstrate the effectiveness and efficiency of our method.
引用
收藏
页码:5704 / 5716
页数:13
相关论文
共 50 条
  • [1] Hyperbolic Knowledge Graph Embeddings for Knowledge Base Completion
    Kolyvakis, Prodromos
    Kalousis, Alexandros
    Kiritsis, Dimitris
    [J]. SEMANTIC WEB (ESWC 2020), 2020, 12123 : 199 - 214
  • [2] Hyperbolic hierarchical knowledge graph embeddings for biological entities
    Li, Nan
    Yang, Zhihao
    Yang, Yumeng
    Wang, Jian
    Lin, Hongfei
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2023, 147
  • [3] Hyperbolic Temporal Knowledge Graph Embeddings with Relational and Time Curvatures
    Montella, Sebastien
    Rojas-Barahona, Lina
    Heinecke, Johannes
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 3296 - 3308
  • [4] Ultrahyperbolic Knowledge Graph Embeddings
    Xiong, Bo
    Zhu, Shichao
    Nayyeri, Mojtaba
    Xu, Chengjin
    Pan, Shirui
    Zhou, Chuan
    Staab, Steffen
    [J]. PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 2130 - 2139
  • [5] Bias in Knowledge Graph Embeddings
    Bourli, Styliani
    Pitoura, Evaggelia
    [J]. 2020 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2020, : 6 - 10
  • [6] Hypernetwork Knowledge Graph Embeddings
    Balazevic, Ivana
    Allen, Carl
    Hospedales, Timothy M.
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: WORKSHOP AND SPECIAL SESSIONS, 2019, 11731 : 553 - 565
  • [7] Quaternion Knowledge Graph Embeddings
    Zhang, Shuai
    Tay, Yi
    Yao, Lina
    Liu, Qi
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [8] Debiasing knowledge graph embeddings
    Fisher, Joseph
    Mittal, Arpit
    Palfrey, Dave
    Christodoulopoulos, Christos
    [J]. PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 7332 - 7345
  • [9] CaRe: Open Knowledge Graph Embeddings
    Gupta, Swapnil
    Kenkre, Sreyash
    Talukdar, Partha
    [J]. 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 378 - 388
  • [10] What Is Learned in Knowledge Graph Embeddings?
    Douglas, Michael R.
    Simkin, Michael
    Ben-Eliezer, Omri
    Wu, Tianqi
    Chin, Peter
    Dang, Trung, V
    Wood, Andrew
    [J]. COMPLEX NETWORKS & THEIR APPLICATIONS X, VOL 2, 2022, 1016 : 587 - 602