On Total Edge Irregularity Strength of Staircase Graphs and Related Graphs

被引:0
|
作者
Susanti, Yeni [1 ]
Puspitasari, Yulia Indah
Khotimah, Husnul [2 ]
机构
[1] Univ Gadjah Mada Indonesia, Dept Math, Kabupaten Sleman, Daerah Istimewa, Indonesia
[2] Univ Muhammadiyah Pringsewu, Dept Math, Lampung, Indonesia
关键词
Total edge irregularity strength; Staircase graphs; Double staircase graphs; Mirror-staircase graphs;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V(G), E(G)) be a connected simple undirected graph with non empty vertex set V(G) and edge set E(G). For a positive integer k, by an edge irregular total k-labeling we mean a function f : V(G) boolean OR E(G) -> {1, 2, ..., k} such that for each two edges ab and cd, it follows that f(a) + f(ab) + f(b) not equal f(c) + f(cd) + f(d), i.e. every two edges have distinct weights. The minimum k for which G has an edge irregular total k-labeling is called the total edge irregularity strength of graph G and denoted by tes(G). In this paper, we determine the exact value of total edge irregularity strength for staircase graphs, double staircase graphs and mirror-staircase graphs.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [41] TOTAL EDGE IRREGULARITY STRENGTH OF THE CARTESIAN PRODUCT OF BIPARTITE GRAPHS AND PATHS
    Wijaya, Rachel Wulan Nirmalasari
    Ryan, Joe
    Kalinowski, Thomas
    [J]. JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2023, 29 (02) : 156 - 165
  • [42] TOTAL ABSOLUTE DIFFERENCE EDGE IRREGULARITY STRENGTH OF SOME FAMILIES OF GRAPHS
    Lourdusamy, A.
    Beaula, F. J.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 (03): : 1005 - 1012
  • [43] Total edge irregularity strength for special types of square snake graphs
    Salama, F.
    Rafat, H.
    Attiya, H.
    [J]. SOFT COMPUTING, 2023, 28 (2) : 917 - 927
  • [44] EDGE IRREGULARITY STRENGTH OF SOME RELATED GRAPHS TO Tp-TREE
    Lourdusamy, A.
    Beaula, F. Joy
    Patrick, F.
    [J]. JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 16 (02): : 233 - 248
  • [45] Note on the group edge irregularity strength of graphs
    Anholcer, Marcin
    Cichacz, Sylwia
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 350 : 237 - 241
  • [47] Total Face Irregularity Strength of Certain Graphs
    Emilet D.A.
    Paul D.
    Jayagopal R.
    Arockiaraj M.
    [J]. Mathematical Problems in Engineering, 2024, 2024
  • [48] Modular total vertex irregularity strength of graphs
    Ali, Gohar
    Baca, Martin
    Lascsakova, Marcela
    Semanicova-Fenovcikova, Andrea
    ALoqaily, Ahmad
    Mlaiki, Nabil
    [J]. AIMS MATHEMATICS, 2023, 8 (04): : 7662 - 7671
  • [49] On total edge irregularity strength of some cactus chain graphs with pendant vertices
    Rosyida, I.
    Indriati, D.
    [J]. 2ND INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2019,
  • [50] Computing the total H-irregularity strength of edge comb product of graphs
    Wahyujati, Mohamad Fahruli
    Susanti, Yeni
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2023, 31 (02): : 177 - 190