Water flooding of cathodic gas diffusion layers (GDLs) in proton-exchange membrane fuel cells at high current densities or low temperatures limits efficient operation due to disturbed transport of reactants to the catalytic sites or products away into the channels. We utilize tomography-based direct pore-level simulations to provide quantitative insights into the transport characteristics of partially saturated GDLs with and without hydrophobic surface treatment to eventually guide the design of better GDLs. High-resolution (voxel size of 1.3 mu m) computed tomography images of two different types commercial Toray TGP-H-120 GDLs, one of them untreated and the other treated by hydrophobic coatings, at different water saturation levels were taken. These images were then digitally processed to precisely segment the gas, water, and fiber phases. The digitalized phase information was used in direct pore-level numerical flow simulations to determine effective relative diffusivity of the gas phase, relative permeability of the gas and liquid water phases, and tortuosity in the gas phase. Mathematical morphology operations were used to calculate size distributions of the liquid water phase and the gas phase at different saturation levels for a better understanding of the pore occupation by water at different capillary pressure. Percolation simulations were used to provide information on the connectivity of the gas and liquid phases. The results were validated with reported experimental data and semi-empirical correlations. Power law expressions provide a good level of accuracy for curve fitting. The hydrophobic coating does not affect the relative permeability and effective realtive diffusivity of air; however, it improves the water permeability significantly. The quantitative results presented provide insights and guidance for designing GDLs with better transport behavior. (C) 2017 Elsevier Ltd. All rights reserved.
机构:
European Commiss, Inst Energy & Transport, Directorate Gen Joint Res Ctr, NL-1755 ZG Petten, NetherlandsEuropean Commiss, Inst Energy & Transport, Directorate Gen Joint Res Ctr, NL-1755 ZG Petten, Netherlands
Bosomoiu, Magdalena
Tsotridis, Georgios
论文数: 0引用数: 0
h-index: 0
机构:
European Commiss, Inst Energy & Transport, Directorate Gen Joint Res Ctr, NL-1755 ZG Petten, NetherlandsEuropean Commiss, Inst Energy & Transport, Directorate Gen Joint Res Ctr, NL-1755 ZG Petten, Netherlands
Tsotridis, Georgios
Bednarek, Tomasz
论文数: 0引用数: 0
h-index: 0
机构:
European Commiss, Inst Energy & Transport, Directorate Gen Joint Res Ctr, NL-1755 ZG Petten, NetherlandsEuropean Commiss, Inst Energy & Transport, Directorate Gen Joint Res Ctr, NL-1755 ZG Petten, Netherlands
机构:
Xi An Jiao Tong Univ, MOE Key Lab Thermofluid Sci & Engn, Sch Energy & Power Engn, Xian, Peoples R ChinaXi An Jiao Tong Univ, MOE Key Lab Thermofluid Sci & Engn, Sch Energy & Power Engn, Xian, Peoples R China
Ren, Guofu
Qu, Zhiguo
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, MOE Key Lab Thermofluid Sci & Engn, Sch Energy & Power Engn, Xian, Peoples R ChinaXi An Jiao Tong Univ, MOE Key Lab Thermofluid Sci & Engn, Sch Energy & Power Engn, Xian, Peoples R China
Qu, Zhiguo
Wang, Xueliang
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, MOE Key Lab Thermofluid Sci & Engn, Sch Energy & Power Engn, Xian, Peoples R ChinaXi An Jiao Tong Univ, MOE Key Lab Thermofluid Sci & Engn, Sch Energy & Power Engn, Xian, Peoples R China
Wang, Xueliang
Zhang, Jianfei
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, MOE Key Lab Thermofluid Sci & Engn, Sch Energy & Power Engn, Xian, Peoples R ChinaXi An Jiao Tong Univ, MOE Key Lab Thermofluid Sci & Engn, Sch Energy & Power Engn, Xian, Peoples R China