An nanoparticle-enhanced surface plasmon resonance sensing of biocatalytic transformations

被引:74
|
作者
Zayats, M
Pogorelova, SP
Kharitonov, AB
Lioubashevski, O
Katz, E
Willner, I [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Chem, IL-91904 Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Farkas Ctr Light Induced Proc, IL-91904 Jerusalem, Israel
关键词
bioelectrocatalysis; biosensors; gold nanoparticles; NAD(+)/NADH cofactors; surface plasmon resonance;
D O I
10.1002/chem.200305104
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
N-(3-Aminopropyl)-N'methyl-4,4'-bipyridinium is coupled to tiopronin-capped Au nanoparticles (diameter ca. 2nm) to yield methyl(aminopropyl)viologen-functionalized Au nanoparticles (MPAV(2+)-Au nanoparticles). In situ electrochemical surface plasmon resonance (SPR) measurements are used to follow the electrochemical deposition of the bipyridinium radical cation modified Au nanoparticles on an Au-coated glass surface and the reoxidation and dissolution of the bipyridinium radical cation film. The MPAV(2+)-functionalized An nanoparticles are also employed for the amplified SPR detection of NAD(+) and NADH cofactors. By SPR monitoring the partial biocatalyzed dissolution of the bipyridinium radical cation film in the presence of diaphorase (DP) NAD(+) is detected in the concentration range of 1 x 10(-4) m to 2 x 10(-3) m. Similarly, the diaphorase-mediated formation of the bipyridinium radical cation film on the Au-coated glass surface by the reduction of the MPAV(2+)-functionalized Au nanoparticles by NADH is used for the amplified SPR detection of NADH in the concentration range of 1 x 10(-4) M to 1 x 10(-3) M.
引用
收藏
页码:6108 / 6114
页数:7
相关论文
共 50 条
  • [31] Lasing-enhanced surface plasmon resonance spectroscopy and sensing
    Zhang, Zhe
    Nest, Leona
    Wang, Suo
    Wang, Si-Yi
    Ma, Ren-Min
    PHOTONICS RESEARCH, 2021, 9 (09) : 1699 - 1714
  • [32] Lasing-enhanced surface plasmon resonance spectroscopy and sensing
    ZHE ZHANG
    LEONA NEST
    SUO WANG
    SI-YI WANG
    REN-MIN MA
    Photonics Research, 2021, (09) : 1699 - 1714
  • [33] Arrayed Graphene Enhanced Surface Plasmon Resonance for Sensing Applications
    Fantoni, Alessandro
    Vygranenko, Yury
    Macarico, Antonio
    Serafinelli, Caterina
    Fernandes, Miguel
    Mansour, Rima
    Jesus, Rui
    Vieira, Manuela
    OPTICAL COMPONENTS AND MATERIALS XVIII, 2021, 11682
  • [34] Magnetic nanoparticle enhanced surface plasmon resonance sensor for estradiol analysis
    Jia, Yingtong
    Peng, Yuan
    Bai, Jialei
    Zhang, Xihao
    Cui, Yanguang
    Ning, Baoan
    Cui, Jiansheng
    Gao, Zhixian
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 254 : 629 - 635
  • [35] Nanoparticle enhanced surface plasmon resonance biosensing: Application of gold nanorods
    Law, Wing-Cheung
    Yong, Ken-Tye
    Baev, Alexander
    Hu, Rui
    Prasad, Paras N.
    OPTICS EXPRESS, 2009, 17 (21): : 19041 - 19046
  • [36] Surface Plasmon Resonance for Sensing
    Chen, Zhihong
    Jiang, Chun
    2012 12TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES (NUSOD), 2012, : 7 - 8
  • [37] Magnetic Nanoparticle Enhanced Surface Plasmon Resonance Sensing and Its Application for the Ultrasensitive Detection of Magnetic Nanoparticle-Enriched Small Molecules
    Wang, Jianlong
    Munir, Ahsan
    Zhu, Zanzan
    Zhou, H. Susan
    ANALYTICAL CHEMISTRY, 2010, 82 (16) : 6782 - 6789
  • [38] Surface plasmon polaritons enhanced magnetic plasmon resonance for high-quality sensing
    Chen, Jing
    Cheng, Lu
    Zhao, Lianjie
    Gu, Ping
    Yan, Zhendong
    Tang, Chaojun
    Gao, Fan
    Zhu, Mingwei
    APPLIED PHYSICS EXPRESS, 2022, 15 (12)
  • [39] Nanoparticle-enhanced photodetection
    Stuart, Howard R.
    Hall, Dennis G.
    Optics and Photonics News, 1996, 7 (12):
  • [40] Nanoparticle-Enhanced Photopolymerization
    Ueno, Kosei
    Juodkazis, Saulius
    Shibuya, Toshiyuki
    Mizeikis, Vygantas
    Yokota, Yukie
    Misawa, Hiroaki
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (27): : 11720 - 11724