ON THE INEQUALITY OF DIFFERENT METRICS FOR MULTIPLE FOURIER-HAAR SERIES
被引:4
|
作者:
Bashirova, A. N.
论文数: 0引用数: 0
h-index: 0
机构:
Moscow MV Lomonosov State Univ, Kazakhstan Branch, 11 Kazhymukan Munaitpasov St, Nur Sultan 010010, KazakhstanMoscow MV Lomonosov State Univ, Kazakhstan Branch, 11 Kazhymukan Munaitpasov St, Nur Sultan 010010, Kazakhstan
Bashirova, A. N.
[1
]
Nursultanov, E. D.
论文数: 0引用数: 0
h-index: 0
机构:
LN Gumilyov Eurasian Natl Univ, Fac Mech & Math, 13 Kazhymukan Munaitpasov St, Nur Sultan 010008, KazakhstanMoscow MV Lomonosov State Univ, Kazakhstan Branch, 11 Kazhymukan Munaitpasov St, Nur Sultan 010010, Kazakhstan
Nursultanov, E. D.
[2
]
机构:
[1] Moscow MV Lomonosov State Univ, Kazakhstan Branch, 11 Kazhymukan Munaitpasov St, Nur Sultan 010010, Kazakhstan
[2] LN Gumilyov Eurasian Natl Univ, Fac Mech & Math, 13 Kazhymukan Munaitpasov St, Nur Sultan 010008, Kazakhstan
Fourier series;
Haar system;
inequality of different metrics;
anisotropic Lebesgue and Lorentz spaces;
LIZORKIN THEOREM;
INTERPOLATION;
CONVOLUTIONS;
D O I:
10.32523/2077-9879-2021-12-3-90-93
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let 1 < p < q < infinity, f is an element of L-p[0, 1]. Then, according to the inequality of different metrics due to S.M. Nikol'skii, for the sequence of norms of partial sums of the Fourier-Haar series {parallel to S-2k (f)parallel to(Lq)}(k=0)(infinity) the following relation is true parallel to S-2k (f)parallel to(Lq) = O (2(k(1/p-1/q))) . In this paper, we study the asymptotic behavior of partial sums in the Lorentz spaces. In particular, it is obtained that parallel to S-2k1 2k2 (f)parallel to(Lq) = o (2(k1(1/p1-1/q1))(+)(k2(1/p2-1/q2))) for f is an element of L (p) over bar (,)(tau) over bar [0, 1](2).