ON THE INEQUALITY OF DIFFERENT METRICS FOR MULTIPLE FOURIER-HAAR SERIES

被引:4
|
作者
Bashirova, A. N. [1 ]
Nursultanov, E. D. [2 ]
机构
[1] Moscow MV Lomonosov State Univ, Kazakhstan Branch, 11 Kazhymukan Munaitpasov St, Nur Sultan 010010, Kazakhstan
[2] LN Gumilyov Eurasian Natl Univ, Fac Mech & Math, 13 Kazhymukan Munaitpasov St, Nur Sultan 010008, Kazakhstan
来源
EURASIAN MATHEMATICAL JOURNAL | 2021年 / 12卷 / 03期
关键词
Fourier series; Haar system; inequality of different metrics; anisotropic Lebesgue and Lorentz spaces; LIZORKIN THEOREM; INTERPOLATION; CONVOLUTIONS;
D O I
10.32523/2077-9879-2021-12-3-90-93
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 1 < p < q < infinity, f is an element of L-p[0, 1]. Then, according to the inequality of different metrics due to S.M. Nikol'skii, for the sequence of norms of partial sums of the Fourier-Haar series {parallel to S-2k (f)parallel to(Lq)}(k=0)(infinity) the following relation is true parallel to S-2k (f)parallel to(Lq) = O (2(k(1/p-1/q))) . In this paper, we study the asymptotic behavior of partial sums in the Lorentz spaces. In particular, it is obtained that parallel to S-2k1 2k2 (f)parallel to(Lq) = o (2(k1(1/p1-1/q1))(+)(k2(1/p2-1/q2))) for f is an element of L (p) over bar (,)(tau) over bar [0, 1](2).
引用
收藏
页码:90 / 93
页数:4
相关论文
共 50 条